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Preface

The present textbook provides prerequisite material for courses in Physics,
Electrical Engineering, Operations Research, and other fields of applied science
where probabilistic models are used intensively. The emphasis has therefore
been placed on modeling and computation.

There are two levels of modeling: abstract and concrete.

The abstract level is relative to the axiomatization of Probability and pro-
vides a general framework that features an archetype of all concrete models,
where the basic objects (events, probability, random variables), the basic con-
cepts (independence, expectation), and the basic rule (countable additivity of
probability) are given in abstract form. This moderately small axiomatic
equipment, establishing Probability as a mathematical theory, suffices to
produce a theorem called the strotig law of large numbers that says in parti-
cular that in tossing coins “the average number of heads tends to 1 as the
number of independent tosses tends to infinity, if the coin is fair.” This result
shows that the axioms of probability are consistent with empirical evidence.
(From a mathematical point of view, this a posteriori check of the relevance
of the axioms is not necessary, whereas from the point of view of the modeler,
it is of course of paramount importance.)

In the present book, the abstract framework is immediately introduced
and a number of examples showing how this framework relates to the daily
concerns of physicists and engineers is provided. The strong law of large
numbers where the abstract framework culminates is proved in the last
chapter.

The other level of modeling consists of fitting a given situation into the
conceptual framework of the axiomatic theory when it is believed that random
phenomena occur. This is a difficult exercise at the beginning, and the art of
modeling can be acquired only through examples. Supplementary readings—
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entitled Hlustrations— provide examples in which probabilistic models have
been successfully developed.

They include, in particular, topics in stochastic processes and statistics as
shown in the following list:

1. A Simple Model in Genetics: Mendel’'s Law and Hardy-Weinberg’s
Theorem

2. The Art of Counting: The Ballot Problem and the Reflection Principle

. Bertrand’s Paradox

4. An Introduction to Population Theory: Galton-Watson’s Branching
Process

5. Shannon’s Source Coding Theorem: An Introduction to Information
Theory

6. Buffon’s Needle: A Problem in Random Geometry

7. An Introduction to Bayesian Decision Theory: Tests of Gaussian Hy-

potheses

A Statistical Procedure: The Chi-Square Test

9. Introduction to Signal Theory: Filtering.

(98]

o0

The first chapter introduces the basic definitions and concepts of probability,
independence, and cumulative distribution functions. It gives the elementary
theory of conditioning (Bayes’ formulas), and presents finite models, where
computation of probability amounts to counting the elements of a given
set. The second chapter is devoted to discrete random variables and to the
generating functions of integer-valued random variables, whereas the third
chapter treats the case of random vectors admitting a probability density. The
last paragraph of the third chapter shows how Measure and Integration
Theory can be useful to Probability Theory. It is of course just a brief summary
of material far beyond the scope of an introduction to probability, emphasiz-
ing a useful technical tool: the Lebesgue convergence theorems. The fourth
chapter treats two topics of special interest to engineers, operations researchers,
and physicists: the Gaussian vectors and the Poisson process, which are the
building blocks of a large number of probabilistic models. The treatment
of Gaussian vectors is elementary but nevertheless contains the proof of
the stability of the Gaussian character by extended linear transformations
(linear transformations followed by passage to the limit in the quadratic
mean). The Gaussian vectors and the Poisson process also constitute a source
of examples of application of the formula of transformation of probability
densities by smooth transformations of random vectors, which is given in
the first paragraph and provides unity for this chapter. The last chapter
treats the various concepts of convergence: in probability, almost sure, in
distribution, and in the quadratic mean.

About 120 exercises with detailed solutions are presented in the main text
to help the reader acquire computational skills and 28 additional exercises
with outlines of solutions are given at the end of the book.

The material of the present textbook can be covered in a one-semester
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undergraduate course and the level can be adjusted simply by including or
discarding portions of the last chapter, more technical, on convergences. The
mathematical background consists of elementary calculus (series, Riemann
integrals) and elementary linear algebra (matrices) as required of students in
Physics and Engineering departments.

Gif-sur-Yvette, France PIERRE BREMAUD
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Abbreviations and Notations

Abbreviations

as. almost surely

cd.f. cumulative distribution function

cf. characteristic function

iid. independent and identically distributed

p.d. probability density

q.m. quadratic mean

r.v. random variable

Notations

A(n, p) the binomial law of size n and parameter p (p. 47)

“%(p) the geometric law of parameter p (p. 48)

P(4) the Poisson law of mean 4 (p. 49)

M (n,k, p;) the multinomial law of size (n, k) and parameter (p,....,p,) (p. 49)
U([a,b]) the uniform law over [a, b] (p. 86)

&(4) the exponential law of parameter A (p. 86)

A (m, a?) the Gaussian law of mean m and variance ¢ (p. 87)

y(2, B) the gamma law of parameters « and f (p. 88)

x2 the chi-square law with n degrees of freedom (p. 88)

X~ the random variable X is distributed according to ... (Example:

“X ~ &(4)" means “X is distributed according to the exponential law
of parameter 4)

R the set of real numbers

R the set of n-dimensional real vectors
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Abbreviations and Notations

the Borelian sets of R”, that is: the smallest o-field on R" containing all
the n-dimensional “rectangles”

the set of non-negative integers

transpose of the matrix A4

line vector, transpose of the column vector u



