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Preface

The research group ‘Homogenization Techniques and Asymptotic Methods
for Problems with Multiple Scales’, co-ordinated by Valeria Chiado Piat and
funded by INdAAM-GNAMPA (Istituto Nazionale di Alta Matematica-Gruppo
Nazionale per I’Analisi Matematica, la Probabilita e le loro Applicazioni), op-
erated from 2001 to 2005, involving in its activities a number of young Italian
mathematicians, mainly interested in problems in the Calculus of Variations
and Partial Differential Equations. One of the initiatives of that group has
been the organization of a number of schools. Those in the years 2001-2003,
whose lecture notes are gathered in this book, had been devoted to problems
with oscillations and concentrations, while the schools in the years 2004-2005
covered a range of topics of Applied Mathematics.

The first school in Turin, 17-21 September 2001, bearing the name of the
research group and devoted to problems with multiple scales, was partially
disrupted by the events of September 11 of that year, one speaker, Gilles
Francfort, finding himself grounded in Los Angeles, and two other speakers,
Andrey Piatnitski and Gregory Chechkin, slowed down in their car trip to
Italy by the tightening of the borders around the European Community. The
two remaining speakers managed however to enlarge their courses to cover
some extra material, encouraged by the receptive audience. The course of
Andrea Braides was devoted to the description of the behaviour of variational
problems on lattices as the lattice spacing tends to zero, and the various multi-
scale behaviours that may be obtained from this process; that of Anneliese
Defranceschi to energies with competing bulk and surface interactions. The
extra lectures are not included in these notes, but some of them constitute
part of the material in the book ‘I'-convergence for Beginners’ (Oxford U.P.,
2002) by Braides. The course of Francfort, on H-measures, was later recovered
in a ‘Part IT’ of the School held at TAC in Rome, December 3-5, 2001, together
with a contribution of Roberto Peirone on homogenization on fractals. Here
we also include the text of the two courses of Piatnitski and Chechkin, while
the lecture notes of the course by Francfort have appeared as a chapter of the
book ‘Variational Problems in Materials Science’, Birkh&user, 2006.



VI Preface

The second part of the present notes covers the content of the subsequent
school on ‘Concentration Phenomena for Variational Problems’ held at the
Department of Mathematics of the University of Rome ‘La Sapienza’, Sep-
tember 1-5, 2003 (co-organized by A. Braides, which explains why he appears
both as an editor and as a contributor). Scope of the School was to present
different problems in the Calculus of Variations depending on a small para-
meter €, that exhibit a dramatic ‘change of type’ as this parameter tends to 0,
that is best described by the ‘concentration’ of some quantity at some lower-
dimensional set. The courses of Sylvia Serfaty and Didier Smets treat the case
of Ginzburg-Landau energies. In a two-dimensional setting it is known that
the concentration of Jacobians of minimizers at points can be interpreted as
the arising of ‘vortices’. A novel method envisaged by Sandier and Serfaty
shows how the limit motion of these vortices can be described by making use
of I'-convergence. On the other hand, Smets’s course focuses on the informa-
tion that can be obtained by looking at the fine behaviour of solutions of the
Allen-Cahn equations, and concerns the motion in any dimension. The use of
I'-convergence as a way to describe the concentration of maximizers of prob-
lems with sub-critical growth is also the subject of the third course by Adriana
Garroni. Here the concentrating quantity is not a Jacobian (the problem is
scalar), but a suitable scaling of the square of the gradient of the maximizer,
that converges as a measure to a sum of Dirac masses. This phenomenon has
been previously described by means of the Concentration-Compactness alter-
native, and this ‘version’ by I'-convergence gives a new interpretation of the
results.

The course of Sylvia Serfaty, originally programmed for this school, had to
be postponed to a subsequent spin-off ‘School on Geometric Evolution Prob-
lems’ held at the Department of Mathematics of the University of Rome ‘Tor
Vergata’, January 26-28, 2004 (with the same organizing team, and an ad-
ditional course by Giovanni Bellettini) but is considered essentially part of
the September 2003 School, and that is why it is included here. Other two
courses, whose notes are not presented here, were held at the School by Gio-
vanni Alberti and Halil Mete Soner. The course of Soner followed the notes of
a previous school and can be found in his Lecture Notes ‘Variational and dy-
namic problems for the Ginzburg-Landau functional. Mathematical aspects
of evolving interfaces’ (Lecture Notes in Math. 1812, Springer, 2003, 177—
233). Alberti’s presentation is partly covered by his review paper ‘A varia-
tional convergence result for Ginzburg-Landau functionals in any dimension’
(Boll. Un. Mat Ital. 4 (2001), 289-310). As a final acknowledgement, it must
be mentioned that these schools had been additionally jointly sponsored by
the Rome and Milan Units of the National Project ‘Calculus of Variations’.

Rome and Turin, Andrea Braides
February 2006 Valeria Chiado Piat
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