Graduate Texts in Mathematics 82

Editorial Board S. Axler F.W. Gehring P.R. Halmos

Springer Science+Business Media, LLC

Graduate Texts in Mathematics

- 1 TAKEUTI/ZARING. Introduction to Axiomatic Set Theory. 2nd ed.
- 2 OXTOBY. Measure and Category. 2nd ed.
- 3 SCHAEFER. Topological Vector Spaces.
- 4 HILTON/STAMMBACH. A Course in Homological Algebra. 2nd ed.
- 5 MAC LANE. Categories for the Working Mathematician.
- 6 HUGHES/PIPER. Projective Planes.
- 7 SERRE. A Course in Arithmetic.
- 8 TAKEUTI/ZARING. Axiomatic Set Theory.
- 9 HUMPHREYS. Introduction to Lie Algebras and Representation Theory.
- 10 COHEN. A Course in Simple Homotopy Theory.
- 11 CONWAY. Functions of One Complex Variable I. 2nd ed.
- 12 BEALS. Advanced Mathematical Analysis.
- 13 ANDERSON/FULLER. Rings and Categories of Modules. 2nd ed.
- 14 GOLUBITSKY/GUILLEMIN. Stable Mappings and Their Singularities.
- 15 BERBERIAN. Lectures in Functional Analysis and Operator Theory.
- 16 WINTER. The Structure of Fields.
- 17 ROSENBLATT. Random Processes. 2nd ed.
- 18 HALMOS. Measure Theory.
- 19 HALMOS. A Hilbert Space Problem Book. 2nd ed.
- 20 HUSEMOLLER. Fibre Bundles. 3rd ed.
- 21 HUMPHREYS. Linear Algebraic Groups.
- 22 BARNES/MACK. An Algebraic Introduction to Mathematical Logic.
- 23 GREUB. Linear Algebra. 4th ed.
- 24 HOLMES. Geometric Functional Analysis and Its Applications.
- 25 HEWITT/STROMBERG. Real and Abstract Analysis.
- 26 MANES. Algebraic Theories.
- 27 KELLEY. General Topology.
- 28 ZARISKI/SAMUEL. Commutative Algebra. Vol.I.
- 29 ZARISKI/SAMUEL. Commutative Algebra. Vol.II.
- 30 JACOBSON. Lectures in Abstract Algebra I. Basic Concepts.
- 31 JACOBSON. Lectures in Abstract Algebra II. Linear Algebra.
- 32 JACOBSON. Lectures in Abstract Algebra III. Theory of Fields and Galois Theory.

- 33 HIRSCH. Differential Topology.
- 34 SPITZER. Principles of Random Walk. 2nd ed.
- 35 WERMER. Banach Algebras and Several Complex Variables. 2nd ed.
- 36 KELLEY/NAMIOKA et al. Linear Topological Spaces.
- 37 MONK. Mathematical Logic.
- 38 GRAUERT/FRITZSCHE. Several Complex Variables.
- 39 ARVESON. An Invitation to C*-Algebras.
- 40 KEMENY/SNELL/KNAPP. Denumerable Markov Chains. 2nd ed.
- 41 APOSTOL. Modular Functions and Dirichlet Series in Number Theory. 2nd ed.
- 42 SERRE. Linear Representations of Finite Groups.
- 43 GILLMAN/JERISON. Rings of Continuous Functions.
- 44 KENDIG. Elementary Algebraic Geometry.
- 45 LOÈVE. Probability Theory I. 4th ed.
- 46 LOÈVE. Probability Theory II. 4th ed.
- 47 MOISE. Geometric Topology in Dimensions 2 and 3.
- 48 SACHS/WU. General Relativity for Mathematicians.
- 49 GRUENBERG/WEIR. Linear Geometry. 2nd ed.
- 50 EDWARDS. Fermat's Last Theorem.
- 51 KLINGENBERG. A Course in Differential Geometry.
- 52 HARTSHORNE. Algebraic Geometry.
- 53 MANIN. A Course in Mathematical Logic.
- 54 GRAVER/WATKINS. Combinatorics with Emphasis on the Theory of Graphs.
- 55 BROWN/PEARCY. Introduction to Operator Theory I: Elements of Functional Analysis.
- 56 MASSEY. Algebraic Topology: An Introduction.
- 57 CROWELL/FOX. Introduction to Knot Theory.
- 58 KOBLITZ. *p*-adic Numbers, *p*-adic Analysis, and Zeta-Functions. 2nd ed.
- 59 LANG. Cyclotomic Fields.
- 60 ARNOLD. Mathematical Methods in Classical Mechanics. 2nd ed.

continued after index

Raoul Bott Loring W. Tu

Differential Forms in Algebraic Topology

With 92 Illustrations

Raoul Bott Mathematics Department Harvard University Cambridge, MA 02138-2901 USA Loring W. Tu Department of Mathematics Tufts University Medford, MA 02155-7049 USA

Editorial Board

S. Axler Department of Mathematics Michigan State University East Lansing, MI 48824 95053 USA F.W. Gehring Department of Mathematics University of Michigan Ann Arbor, MI 48109

USA

P.R. Halmos Department of Mathematics Santa Clara University Santa Clara, CA

USA

Mathematics Subject Classifications (1991): 57Rxx, 58Axx, 14F40

Library of Congress Cataloging-in-Publication Data Bott, Raoul, 1924– Differential forms in algebraic topology (Graduate texts in mathematics : 82) Bibliography : p. Includes index. 1. Differential topology. 2. Algebraic topology. 3. Differential forms. I. Tu Loring W. II. Title. III. Series. QA613.6.B67 514'.72 81-9172

Printed on acid-free paper.

© 1982 Springer Science+Business Media New York Originally published by Springer-Verlag New York, Inc. in 1982

All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher Springer Science+Business Media, LLC,

except for brief excerpts in connection with reviews or scholarly

analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.

The use of general descriptive names, trade names, trademarks, etc., in this publication, even if the former are not especially identified, is not to be taken as a sign that such names, as understood by the Trade Marks and Merchandise Marks Act, may accordingly be used freely by anyone.

Production managed by Bill Imbornoni; manufacturing supervised by Jacqui Ashri.

987654

ISBN 978-1-4419-2815-3 ISBN 978-1-4757-3951-0 (eBook) DOI 10.1007/978-1-4757-3951-0 SPIN 10635035 For Phyllis Bott and Lichu and Tsuchih Tu

Preface

The guiding principle in this book is to use differential forms as an aid in exploring some of the less digestible aspects of algebraic topology. Accordingly, we move primarily in the realm of smooth manifolds and use the de Rham theory as a prototype of all of cohomology. For applications to homotopy theory we also discuss by way of analogy cohomology with arbitrary coefficients.

Although we have in mind an audience with prior exposure to algebraic or differential topology, for the most part a good knowledge of linear algebra, advanced calculus, and point-set topology should suffice. Some acquaintance with manifolds, simplicial complexes, singular homology and cohomology, and homotopy groups is helpful, but not really necessary. Within the text itself we have stated with care the more advanced results that are needed, so that a mathematically mature reader who accepts these background materials on faith should be able to read the entire book with the minimal prerequisites.

There are more materials here than can be reasonably covered in a one-semester course. Certain sections may be omitted at first reading without loss of continuity. We have indicated these in the schematic diagram that follows.

This book is not intended to be foundational; rather, it is only meant to open some of the doors to the formidable edifice of modern algebraic topology. We offer it in the hope that such an informal account of the subject at a semi-introductory level fills a gap in the literature.

It would be impossible to mention all the friends, colleagues, and students whose ideas have contributed to this book. But the senior author would like on this occasion to express his deep gratitude, first of all to his primary topology teachers E. Specker, N. Steenrod, and K. Reidemeister of thirty years ago, and secondly to H. Samelson, A. Shapiro, I. Singer, J.-P. Serre, F. Hirzebruch, A. Borel, J. Milnor, M. Atiyah, S.-s. Chern, J. Mather, P. Baum, D. Sullivan, A. Haefliger, and Graeme Segal, who, mostly in collaboration, have continued this word of mouth education to the present; the junior author is indebted to Allen Hatcher for having initiated him into algebraic topology. The reader will find their influence if not in all, then certainly in the more laudable aspects of this book. We also owe thanks to the many other people who have helped with our project: to Ron Donagi, Zbig Fiedorowicz, Dan Freed, Nancy Hingston, and Deane Yang for their reading of various portions of the manuscript and for their critical comments, to Ruby Aguirre, Lu Ann Custer, Barbara Moody, and Caroline Underwood for typing services, and to the staff of Springer-Verlag for its patience, dedication, and skill.

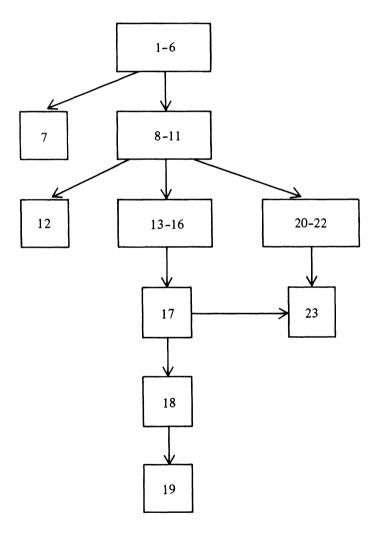
For the Revised Third Printing

While keeping the text essentially the same as in previous printings, we have made numerous local changes throughout. The more significant revisions concern the computation of the Euler class in Example 6.44.1 (pp. 75–76), the proof of Proposition 7.5 (p. 85), the treatment of constant and locally constant presheaves (p. 109 and p. 143), the proof of Proposition 11.2 (p. 115), a local finite hypothesis on the generalized Mayer–Vietoris sequence for compact supports (p. 139), transgressive elements (Prop. 18.13, p. 248), and the discussion of classifying spaces for vector bundles (pp. 297–300).

We would like to thank Robert Lyons, Jonathan Dorfman, Peter Law, Peter Landweber, and Michael Maltenfort, whose lists of corrections have been incorporated into the second and third printings.

> RAOUL BOTT LORING TU

Interdependence of the Sections



ix

Contents

Intr	Introduction	
СНА	APTER I	
De	Rham Theory	13
§1	The de Rham Complex on \mathbb{R}^n	13
	The de Rham complex Compact supports	13 17
§2	The Mayer-Vietoris Sequence	19
	The functor Ω^* The Mayer–Vietoris sequence The functor Ω^*_c and the Mayer–Vietoris sequence for compact supports	19 22 25
§3	Orientation and Integration	27
	Orientation and the integral of a differential form Stokes' theorem	27 31
§4	Poincaré Lemmas	33
	The Poincaré lemma for de Rham cohomology The Poincaré lemma for compactly supported cohomology The degree of a proper map	33 37 40
§5	The Mayer-Vietoris Argument	42
	Existence of a good cover Finite dimensionality of de Rham cohomology Poincaré duality on an orientable manifold	42 43 44

Contents

The Künneth formula and the Leray-Hirsch theorem	47
The Poincaré dual of a closed oriented submanifold	50
The Thom Isomorphism	53
Vector bundles and the reduction of structure groups	53
Operations on vector bundles	56
Compact cohomology of a vector bundle	59
Compact vertical cohomology and integration along the fiber	61
Poincaré duality and the Thom class	65
The global angular form, the Euler class, and the Thom class	70
Relative de Rham theory	78
The Nonorientable Case	79
The twisted de Rham complex	79
Integration of densities, Poincaré duality, and the Thom isomorphism	85
	The Poincaré dual of a closed oriented submanifold The Thom Isomorphism Vector bundles and the reduction of structure groups Operations on vector bundles Compact cohomology of a vector bundle Compact vertical cohomology and integration along the fiber Poincaré duality and the Thom class The global angular form, the Euler class, and the Thom class Relative de Rham theory The Nonorientable Case The twisted de Rham complex

CHAPTER II

The Čech-de Rham Complex	89
--------------------------	----

§8	The Generalized Mayer-Vietoris Principle	89
	Reformulation of the Mayer–Vietoris sequence Generalization to countably many open sets and applications	89 92
§9	More Examples and Applications of the Mayer-Vietoris Principle	99
	Examples: computing the de Rham cohomology from the combinatorics of a good cover Explicit isomorphisms between the double complex and de Rham and Čech The tic-tac-toe proof of the Künneth formula	100 102 105
§10	Presheaves and Čech Cohomology	108
	Presheaves Čech cohomology	108 110
§11	Sphere Bundles	113
	Orientability The Euler class of an oriented sphere bundle The global angular form Euler number and the isolated singularities of a section Euler characteristic and the Hopf index theorem	114 116 121 122 126
§12	The Thom Isomorphism and Poincaré Duality Revisited	129
	The Thom isomorphism Euler class and the zero locus of a section A tic-tac-toe lemma Poincaré duality	130 133 135 139

Conter	ıts
--------	-----

§13	Monodromy	141
	When is a locally constant presheaf constant? Examples of monodromy	141 151

CHAPTER III

Spectral Sequences and Applications	154
T T T T T T	101

The Spectral Sequence of a Filtered Complex	155
Exact couples The spectral sequence of a filtered complex The spectral sequence of a double complex The spectral sequence of a fiber bundle Some applications Product structures The Gysin sequence Leray's construction	155 156 161 169 170 174 177 179
Cohomology with Integer Coefficients	182
Singular homology The cone construction The Mayer-Vietoris sequence for singular chains Singular cohomology The homology spectral sequence	183 184 185 188 196
The Path Fibration	197
The path fibration The cohomology of the loop space of a sphere	198 203
Review of Homotopy Theory	206
Homotopy groups The relative homotopy sequence Some homotopy groups of the spheres Attaching cells Digression on Morse theory The relation between homotopy and homology $\pi_3(S^2)$ and the Hopf invariant	206 212 213 217 220 225 227
Applications to Homotopy Theory	239
Eilenberg-MacLane spaces The telescoping construction The cohomology of $K(\mathbb{Z}, 3)$ The transgression Basic tricks of the trade Postnikov approximation Computation of $\pi_4(S^3)$	240 241 245 247 249 250 251
	Exact couples The spectral sequence of a filtered complex The spectral sequence of a fiber bundle Some applications Product structures The Gysin sequence Leray's construction Cohomology with Integer Coefficients Singular homology The cone construction The Mayer-Vietoris sequence for singular chains Singular cohomology The homology spectral sequence The Path Fibration The path fibration The path fibration The cohomology of the loop space of a sphere Review of Homotopy Theory Homotopy groups The relative homotopy sequence Some homotopy groups of the spheres Attaching cells Digression on Morse theory The relation between homotopy and homology $\pi_3(S^2)$ and the Hopf invariant Applications to Homotopy Theory Eilenberg-MacLane spaces The transgression Basic tricks of the trade Postnikov approximation

256
200
258
259
259
262

CHAPTER IV

Characteristic Classes	266

§20	Chern Classes of a Complex Vector Bundle	267
	The first Chern class of a complex line bundle The projectivization of a vector bundle Main properties of the Chern classes	267 269 271
	Main properties of the Chern classes	271
§21	The Splitting Principle and Flag Manifolds	273
	The splitting principle Proof of the Whitney product formula and the equality	273
	of the top Chern class and the Euler class	275
	Computation of some Chern classes	278
	Flag manifolds	282
§22	Pontrjagin Classes	285
	Conjugate bundles	286
	Realization and complexification	286
	The Pontrjagin classes of a real vector bundle	289
	Application to the embedding of a manifold in a Euclidean space	290
§23	The Search for the Universal Bundle	291
	The Grassmannian	292
	Digression on the Poincaré series of a graded algebra	294
	The classification of vector bundles	297
	The infinite Grassmannian	302
	Concluding remarks	303
Ref	ferences	307
		507
Lis	t of Notations	311
Ind	lex	319