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Preface 

The guiding principle in this book is to use differential forms as an aid in 
exploring some of the less digestible aspects of algebraic topology. Accord­
ingly, we move primarily in the realm of smooth manifolds and use the 
de Rham theory as a prototype of all of cohomology. For applications to 
homotopy theory we also discuss by way of analogy cohomology with 
arbitrary coefficients. 

Although we have in mind an audience with prior exposure to algebraic 
or differential topology, for the most part a good knowledge of linear 
algebra, advanced calculus, and point-set topology should suffice. Some 
acquaintance with manifolds, simplicial complexes, singular homology and 
cohomology, and homotopy groups is helpful, but not really necessary. 
Within the text itself we have stated with care the more advanced results 
that are needed, so that a mathematically mature reader who accepts these 
background materials on faith should be able to read the entire book with 
the minimal prerequisites. 

There are more materials here than can be reasonably covered in a 
one-semester course. Certain sections may be omitted at first reading with­
out loss of continuity. We have indicated these in the schematic diagram 
that follows. 

This book is not intended to be foundational; rather, it is only meant to 
open some of the doors to the formidable edifice of modern algebraic 
topology. We offer it in the hope that such an informal account of the 
subject at a semi-introductory level fills a gap in the literature. 

It would be impossible to mention all the friends, colleagues, and 
students whose ideas have contributed to this book. But the senior 
author would like on this occasion to express his deep gratitude, first 
of all to his primary topology teachers E. Specker, N. Steenrod, and 
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viii Preface 

K. Reidemeister of thirty years ago, and secondly to H. Samelson, A. Shapiro, 
I. Singer, l-P. Serre, F. Hirzebruch, A. Borel, J. Milnor, M. Atiyah, S.-s. 
Chern, J. Mather, P. Baum, D. Sullivan, A. Haefliger, and Graeme Segal, 
who, mostly in collaboration, have continued this word of mouth education 
to the present; the junior author is indebted to Allen Hatcher for having 
initiated him into algebraic topology. The reader will find their influence if 
not in all, then certainly in the more laudable aspects of this book. We also 
owe thanks to the many other people who have helped with our project: to 
Ron Donagi, Zbig Fiedorowicz, Dan Freed, Nancy Hingston, and Deane 
Yang for their reading of various portions of the manuscript and for their 
critical comments, to Ruby Aguirre, Lu Ann Custer, Barbara Moody, and 
Caroline Underwood for typing services, and to the staff of Springer-Verlag 
for its patience, dedication, and skill. 

F or the Revised Third Printing 

While keeping the text essentially the same as in previous printings, we have 
made numerous local changes throughout. The more significant revisions 
concern the computation ofthe Euler class in Example 6.44.1 (pp. 75-76), the 
proof of Proposition 7.5 (p. 85), the treatment of constant and locally con­
stant presheaves (p. 109 and p. 143), the proof of Proposition 11.2 (p. 115), a 
local finite hypothesis on the generalized Mayer-Vietoris sequence for com­
pact supports (p. 139), transgressive elements (Prop. 18.13, p. 248), and the 
discussion of classifying spaces for vector bundles (pp. 297-3(0). 

We would like to thank Robert Lyons, Jonathan Dorfman, Peter Law, 
Peter Landweber, and Michael Maltenfort, whose lists of corrections have 
been incorporated into the second and third printings. 

RAOUL BOTT 

LORINOTu 
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