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To Gabriella 



There is no permanent place in the 
world for ugly mathematics. 

G. H. Hardy 
A Mathematician's Apology 



Preface 

This book is intended for the young student who is interested in graph 
theory and wishes to study it as part of his mathematical education. Ex­
perience at Cambridge shows that none of the currently available texts meet 
this need. Either they are too specialized for their audience or they lack the 
depth and development needed to reveal the nature of the subject. 

We start from the premise that graph theory is one of several courses 
which compete for the student's attention and should contribute to his 
appreciation of mathematics as a whole. Therefore, the book does not 
consist merely of a catalogue of results but also contains extensive descriptive 
passages designed to convey the flavour of the subject and to arouse the 
student's interest. Those theorems which are vital to the development are 
stated clearly, together with full and detailed proofs. The book thereby 
offers a leisurely introduction to graph theory which culminates in a thorough 
grounding in most aspects of the subject. 

Each chapter contains three or four sections, exercises and bibliographical 
notes. Elementary exercises are marked with a - sign, while the difficult 
ones, marked by + signs, are often accompanied by detailed hints. In the 
opening sections the reader is led gently through the material: the results 
are rather simple and their easy proofs are presented in detail. The later 
sections are for those whose interest in the topic has been excited: the theorems 
tend to be deeper and their proofs, which may not be simple, are described 
more rapidly. Throughout this book the reader will discover connections 
with various other branches of mathematics, including optimization theory, 
linear algebra, group theory, projective geometry, representation theory, 
probability theory, analysis, knot theory and ring theory. Although most 
of these connections are nQt essential for an understanding of the book, the 
reader would benefit greatly from a modest acquaintance with these SUbjects. 
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viii Preface 

The bibliographical notes are not intended to be exhaustive but rather to 
guide the reader to additional material. 

I am grateful to Andrew Thomason for reading the manuscript carefully 
and making many useful suggestions. John Conway has also taught the 
graph theory course at Cambridge and I am particularly indebted to him for 
detailed advice and assistance with Chapters II and VIII. I would like to 
thank Springer-Verlag and especially Joyce Schanbacher for their efficiency 
and great skill in producing this book. 

Cambridge 
April 1979 

Bela Bollobas 
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