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Preface 

In recent years there have been considerable developments in symmetry 
methods (group methods) for differential equations as evidenced by the 
number of research papers devoted to the subject. This is no doubt due 
to the inherent applicability of the methods to nonlinear differential equa­
tions. Symmetry methods for differential equations, originally developed by 
Sophus Lie, are highly algorithmic. They systematically unify and extend 
existing ad hoc techniques to construct explicit solutions for differential 
equations, most importantly for nonlinear differential equations. Often in­
genious techniques for solving particular differential equations arise trans­
parently from the group point of view, and thus it is somewhat surprising 
that symmetry methods are not more widely used. 

A major portion of this book discusses work that has appeared since 
the publication of the book Similarity Methods for Differential Equations, 
Springer-Verlag, 1974, by G.W. BIuman and J.D. Cole. The present book 
includes a comprehensive treatment of Lie groups of transformations and 
thorough discussions of basic symmetry methods for solving ordinary and 
partial differential equations. No knowledge of group theory is assumed. 
Emphasis is placed on explicit computational algorithms to discover sym­
metries admitted by differential equations and to construct solutions re­
sulting from symmetries. 

This book should be particularly suitable for physicists, applied mathe­
maticians, and engineers. Almost all of the examples are taken from physi­
cal and engineering problems including those concerned with heat conduc­
tion, wave propagation, and fluid flows. A preliminary version was used as 
lecture notes for a two-semester course taught by the first author at the 
University of British Columbia in 1987-88 to graduate and senior under­
graduate students in applied mathematics and physics. 

Chapters 1 through 4 encompass basic material. More specialized topics 
are covered in Chapters 5 through 7. 

Chapter 1 introduces the basic ideas of group transformations and their 
connections with differential equations through a thorough treatment of 
dimensional analysis and generalizations of the well-known Buckingham 
Pi-theorem. This chapter should give the reader an intuitive grasp of the 
subject matter of the book in an elementary setting. 

Chapter 2 develops the basic concepts of Lie groups of transformations 
and Lie algebras necessary in subsequent chapters. A Lie group of transfor-
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mations is characterized in terms of its infinitesimal generators which form 
a Lie algebra. 

Chapter 3 is concerned with ordinary differential equations. It is shown 
how group transformations are used to construct solutions and how to find 
group transformations leaving ordinary differential equations invariant. We 
present a reduction algorithm that reduces an nth order differential equa­
tion, admitting a solvable r-parameter Lie group of transformations, to an 
(n - r)th order differential equation plus r quadratures. We derive an algo­
rithm to construct special solutions (invariant solutions) that are invariant 
under admitted Lie groups of transformations. For a first order differential 
equation such invariant solutions include separatrices and singular envelope 
solutions. 

Chapter 4 is concerned with partial differential equations. It is shown how 
one finds group transformations leaving them invariant, how corresponding 
invariant solutions are constructed, and how group methods are applied to 
boundary value problems. 

Chapter 5 discusses the connection between conservation laws and the 
invariance of Euler-Lagrange equations, arising from variational problems, 
under Lie groups of transformations. Various formulations of Noether's 
theorem are presented to construct such conservation laws. This leads to 
generalizing the concept of Lie groups of point transformations of earlier 
chapters to Lie-Backlund transformations that account for higher order 
conservation laws associated with partial differential equations that have 
solutions exhibiting soliton behavior. We present algorithms to construct 
recursion operators generating infinite sequences of Lie-Backlund symme­
tries. 

In Chapter 6 it is shown how group transformations can be used to deter­
mine whether or not a given differential equation can be mapped invertibly 
to a target differential equation. Algorithms are given to construct such 
mappings when they exist. In particular, we give necessary and sufficient 
conditions for mapping a given nonlinear system of partial differential equa­
tions to a linear system of partial differential equations and for mapping 
a given linear partial differential equation with variable coefficients to a 
linear partial differential equation with constant coefficients. 

In Chapter 7 the concept of Lie groups of transformations is general­
ized further to include non local symmetries of differential equations. We 
present a systematic method for finding a special class of nonlocal symme­
tries that are realized as local symmetries of related auxiliary systems (po­
tential symmetries). The introduction of potential symmetries significantly 
extends the applicability of group methods to both ordinary and partial 
differential equations. Together with the mapping algorithms developed in 
Chapter 6, the use of potential symmetries allows one to find systemati­
cally non-invertible mappings that transform nonlinear partial differential 
equations to linear partial differential equations. 

Chapters 2 through 7 can be read independently of Chapter 1. The ma-
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terial in Chapter 2 is essential for all subsequent chapters but a reader only 
interested in scalar ordinary differential equations may omit Sections 2.3.3 
to 2.3.5. Chapter 4 can be read independently of Chapter 3. A reader inter­
ested in conservation laws (Chapter 5) needs to know how to find Lie groups 
of transformations admitted by differential equations (Sections 3.2.3, 3.3.4, 
4.2.3,4.3.3). Chapter 6 can be read independently of Chapters 3 and 5. 

Every topic is illustrated by examples. Almost all sections have many 
exercises. It is essential to do these exercises in order to obtain a working 
knowledge of the material. Each chapter ends with a Discussion section 
that puts its contents in perspective by summarizing major results, by re­
ferring to related works, and by introducing related material in subsequent 
chapters. 

Within each section and subsection of a given chapter, definitions, the­
orems, lemmas, and corollaries are numbered separately as well as con­
secutively. For example, Definition 2.2.3-1 refers to the first definition and 
Theorem 2.2.3-1 to the first theorem in Section 2.2.3; Definition 1.4-1 refers 
to the first definition in Section 1.4. Exercises appear at the conclusion of 
a section; Exercise 1.3-4 refers to the fourth problem of Exercises 1.3. 

We thank Greg Reid for helpful suggestions that improved Chapter 7, 
Alex Ma for his assistance, and Doug Jamison, Mei-Ling Fong, Sheila Han­
cock, Joanne Congo, Marilyn Lacate, Joan de Niverville, and Rita Sieber 
for their patience and care in typing various drafts of the manuscripts. 

Vancouver, Canada George W. BIuman 
Sukeyuki Kumei 
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