Parallel Scientific Computation

A structured approach using BSP and MPI

ROB H. BISSELING

 $Utrecht \ University$

Great Clarendon Street, Oxford OX2 6DP

Oxford University Press is a department of the University of Oxford. It furthers the University's objective of excellence in research, scholarship, and education by publishing worldwide in

Oxford New York

Auckland Bangkok Buenos Aires Cape Town Chennai Dares Salaam Delhi Hong Kong Istanbul Karachi Kolkata Kuala Lumpur Madrid Melbourne Mexico City Mumbai Nairobi São Paulo Shanghai Taipei Tokyo Toronto

Oxford is a registered trade mark of Oxford University Press in the UK and in certain other countries

> Published in the United States by Oxford University Press Inc., New York

> > © Oxford University Press 2004

The moral rights of the author have been asserted Database right Oxford University Press (maker)

First published 2004

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, without the prior permission in writing of Oxford University Press, or as expressly permitted by law, or under terms agreed with the appropriate reprographics rights organization. Enquiries concerning reproduction outside the scope of the above should be sent to the Rights Department, Oxford University Press, at the address above

You must not circulate this book in any other binding or cover and you must impose this same condition on any acquirer

A catalogue record for this title is available from the British Library

Library of Congress Cataloging in Publication Data

(Data available)

ISBN 0198529392

 $10 \ 9 \ 8 \ 7 \ 6 \ 5 \ 4 \ 3 \ 2 \ 1$

Typeset by Newgen Imaging Systems (P) Ltd., Chennai, India Printed in Great Britain on acid-free paper by Biddles Ltd, www.biddles.co.uk

CONTENTS

1	Introduction			
	1.1	Wanted: a gentle parallel programming model	1	
	1.2	The BSP model	3	
	1.3	BSP algorithm for inner product computation	9	
	1.4	Starting with BSPlib: example program bspinprod	13	
	1.5	BSP benchmarking	24	
	1.6	Example program bspbench	27	
	1.7	Benchmark results		
	1.8	Bibliographic notes	38	
		1.8.1 BSP-related models of parallel computation	38	
		1.8.2 BSP libraries	40	
		1.8.3 The non-BSP world: message passing	42	
		1.8.4 Benchmarking	43	
	1.9	Exercises	44	
2	\mathbf{LU}	J decomposition		
	2.1	The problem	50	
	2.2	Sequential LU decomposition	51	
	2.3	Basic parallel algorithm	57	
	2.4	Two-phase broadcasting and other improvements	64	
	2.5	Example function bsplu	72	
	2.6	Experimental results on a Cray T3E	79 85	
	2.7	0 1		
		2.7.1 Matrix distributions	85	
		2.7.2 Collective communication	87	
		2.7.3 Parallel matrix computations	87	
	2.8	Exercises	88	
3	The fast Fourier transform			
	3.1	The problem	100	
	3.2	Sequential recursive fast Fourier transform	103	
	3.3	Sequential nonrecursive algorithm	105	
	3.4	Parallel algorithm	113	
	3.5	Weight reduction	120	
	3.6	Example function bspfft	127	
	3.7	Experimental results on an SGI Origin 3800	136	
	3.8	Bibliographic notes	145	
		3.8.1 Sequential FFT algorithms	145	

CONTENTS

		3.8.2	Parallel FFT algorithms with $\log_2 p$ or more		
			supersteps	147	
		3.8.3	Parallel FFT algorithms with $\mathcal{O}(1)$ supersteps	148	
		3.8.4	Applications	151	
	3.9	Exerc	ises	152	
4	Sparse matrix-vector multiplication				
	4.1	The p	oroblem	163	
	4.2	Spars	e matrices and their data structures	167	
	4.3	Parall	lel algorithm	173	
	4.4	Carte	sian distribution	179	
	4.5	Mond	riaan distribution for general sparse matrices	186	
		Vector	r distribution	197	
	4.7	Rande	om sparse matrices	203	
	4.8	Lapla	cian matrices	210	
	4.9	Rema	inder of BSPlib: example function bspmv	222	
	4.10	Exper	rimental results on a Beowulf cluster	231	
	4.11	Biblio	graphic notes	235	
		4.11.1	Sparse matrix computations	235	
		4.11.2	Parallel sparse matrix–vector multiplication		
			algorithms	237	
		4.11.3	Parallel iterative solvers for linear systems	239	
		4.11.4	Partitioning methods	240	
	4.12	Exerc	ises	243	
\mathbf{A}	Au	-	BSPedupack functions	251	
	A.1		er file bspedupack.h	251	
	A.2	Utilit	ty file bspedupack.c	251	
в	Ac	luick 1	reference guide to BSPlib	254	
\mathbf{C}		0	ming in BSP style using MPI	256	
			message-passing interface	256	
	C.2		rerting BSPedupack to MPIedupack	258	
			Program mpiinprod	258	
			Program mpibench	261	
			Function mpilu	265	
			Function mpifft	270	
			Function mpimv	273	
			ormance comparison on an SGI Origin 3800	278	
	C.4	When	re BSP meets MPI	280	
References					
In	Index				