Practical Methods for Optimal Control Using Nonlinear Programming

John T. Betts The Boeing Company Seattle, Washington

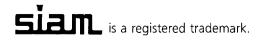
Society for Industrial and Applied Mathematics Philadelphia Copyright ©2001 by the Society for Industrial and Applied Mathematics.

10987654321

All rights reserved. Printed in the United States of America. No part of this book may be reproduced, stored, or transmitted in any manner without the written permission of the publisher. For information, write to the Society for Industrial and Applied Mathematics, 3600 University City Science Center, Philadelphia, PA 19104-2688.

Library of Congress Cataloging-in-Publication Data

Betts, John T. 1943-


Practical methods for optimal control using nonlinear programming / John T. Betts. p. cm.— (Advances in design and control) Includes bibliographical references and index.

ISBN 0-89871-488-5

1. Control theory. 2. Mathematical optimization. 3. Nonlinear programming. I. Series.

QA402.3 .B47 2001 629.8'312--dc21

00-069809

Contents

Preface

Introduction to Nonlinear Programming 1 1.1 Preliminaries Newton's Method in One Variable 1.21.31.4Newton's Method for Minimization in One Variable Newton's Method in Several Variables 1.51.6Recursive Updates 1.71.8 1.91.11 Globalization Strategies

1.12	Nonlinear Programming	27
1.13	An SQP Algorithm	28
Lar	ge, Sparse Nonlinear Programming	37
2.1	Overview: Large, Sparse NLP Issues	37
2.2		
2.3		
2.4		
2.5		
2.6		
2.7		
2.8	-	
2.9		
2.10		
Opt	imal Control Preliminaries	61
3.1	The Transcription Method	61
3.2		
3.3		
3.4		
3.5		
3.6	Boundary Value Example	
	1.13 1.14 Larg 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 Opt 3.1 3.2 3.3 3.4 3.5	2.2 Sparse Finite Differences 2.3 Sparse QP Subproblem 2.4 Merit Function 2.5 Hessian Approximation 2.6 Sparse SQP Algorithm 2.7 Defective Subproblems 2.8 Feasible Point Strategy 2.9 Computational Experience 2.10 Nonlinear Least Squares 3.1 The Transcription Method 3.2 Dynamic Systems 3.3 Shooting Method 3.4 Multiple Shooting Method 3.5 Initial Value Problems

 $\mathbf{i}\mathbf{x}$

1

1

 $\mathbf{2}$

3

5

 $\frac{7}{8}$

10

12

15

17

20

	$\begin{array}{c} 3.7\\ 3.8\end{array}$	Dynamic Modeling Hierarchy		
4	The	Optimal Control Problem	81	
	4.1	Introduction	81	
	4.2	Necessary Conditions for the Discrete Problem	84	
	4.3	Direct versus Indirect Methods	85	
	4.4	General Formulation	87	
	4.5	Direct Transcription Formulation	89	
	4.6	NLP Considerations—Sparsity	92	
	4.7	Mesh Refinement	107	
	4.8	Scaling	121	
	4.9	Quadrature Equations	123	
	4.10	What Can Go Wrong	125	
E	0-+	imal Control Eugenzia	199	
5	-	imal Control Examples	133	
	5.1	Space Shuttle Reentry Trajectory		
	5.2	Minimum Time to Climb		
	5.3	Low-Thrust Orbit Transfer		
	5.4	Two-Burn Orbit Transfer		
	5.5	Industrial Robot		
	5.6	Multibody Mechanism	170	
Appendix: Software 177				
-	A.1	Simplified Usage Dense NLP	177	
	A.2	Sparse NLP with Sparse Finite Differences		
	A.3	Optimal Control Using Sparse NLP		
Bibliography 181				
Index				