Metodi matematici della fisica

Carocci editore

2ª ristampa, maggio 2014 1ª edizione Studi Superiori, marzo 2012 1ª edizione Università, 1993 (6 ristampe) © copyright 1993 by La Nuova Italia Scientifica, Roma © copyright 1998 by Carocci editore S.p.A., Roma

Finito di stampare nel maggio 2014 da Grafiche VD srl, Città di Castello (PG)

ISBN 978-88-430-1517-7

Riproduzione vietata ai sensi di legge (art. 171 della legge 22 aprile 1941, n. 633)

Senza regolare autorizzazione, è vietato riprodurre questo volume anche parzialmente e con qualsiasi mezzo, compresa la fotocopia, anche per uso interno o didattico.

Indice

Prefazione			
1. Funzioni di una variabile complessa			
1.1. Proprietà notevoli dei numeri complessi			
1.1.1. Definizione e operazioni elementari	15		
1.1.2. Interpretazione geometrica	-16		
1.1.3. Calcolo vettoriale in 2 dimensioni con i numeri complessi	22		
1.2. I numeri complessi in fisica	25		
1.2.1. Osservatori rotanti	25		
1.2.2. Il metodo delle coordinate rotanti	26		
1.2.3. Sistemi lineari causali	27		
1.2.4. Cinematica in coordinate polari piane	29		
1.3. Funzioni analitiche	30		
1.3.1. Il punto all'infinito	30		
1.3.2. La nozione di dominio	31		
1.3.3. Le funzioni di una variabile complessa	32		
1.3.4. Condizioni di Cauchy-Riemann	35		
1.3.5. Funzioni analitiche e funzioni armoniche	39		
1.3.6. Trasformazioni conformi	40		
1.3.7. Funzioni elementari di variabile complessa	42		
1.4. Le trasformazioni (mapping) bilineari o di Moebius	49		
1.4.1. Proprietà generali	49		
1.4.2. Trasformazioni elementari	50		
1.4.3. Rappresentazione matriciale del gruppo di Moebius	52		
1.5. Le funzioni analitiche in fisica; l'equazione di Laplace	54		
1.5.1. Campi conservativi	54		
1.5.2. Campi vettoriali piani	56		
1.5.3. La soluzione di problemi armonici mediante il mapping	58		
1.6. Singolarità polari ed essenziali; funzioni monodrome	67		
1.6.1. Zeri di una funzione analitica e loro proprietà	67		

METODI MATEMATICI DELLA FISICA

	1.6.2. Poli e singolarità essenziali	6
	1.6.3. Classificazione delle funzioni analitiche monodrome	7
1.7.	Polidromia	7:
	1.7.1. Rami di funzioni polidrome	75
	1.7.2. Superfici di Riemann	74
	1.7.3. Considerazioni topologiche sulle superfici di Riemann	7
	Integrazione delle funzioni di una variabile complessa	81
	Integrali di linea	81
2.2.	Il teorema integrale di Cauchy	84
	2.2.1. Il caso dei domini semplicemente connessi	84
	2.2.2. Primitive di una funzione analitica	89
	2.2.3. Il caso dei domini a connessione multipla	91
2.3.	La formula integrale di Cauchy e i suoi corollari	95
	2.3.1. La formula integrale di Cauchy	95
	2.3.2. Il teorema del massimo modulo	97
	2.3.3. Corollari	99
	2.3.4. Valore principale di un integrale	101
	2.3.5. Formule di Plemelij-Sokhotski	104
2.4.	Integrali su archi infiniti e infinitesimi. Lemma di Jordan	108
2.5.	La causalità e le relazioni di dispersione	114
	Rappresentazioni integrali e per serie	119
	Considerazioni introduttive	119
3.2.	Domini di convergenza	121
	3.2.1. Convergenza uniforme e criteri di convergenza	121
	3.2.2. Famiglie di funzioni	123
3.3.	Teoremi di Liouville e di Morera	124
	3.3.1. Teoremi di Liouville	124
	3.3.2. Teorema di Morera	125
3.4.	Serie di Taylor e di Laurent e prodotti infiniti	127
	3.4.1. Serie di Taylor	127
	3.4.2. Serie di Laurent	132
	3.4.3. Sviluppo di Mittag-Leffler e prodotti infiniti	137
3.5.	Integrali con i residui	149
	3.5.1. Il teorema dei residui	149
	3.5.2. Applicazioni del teorema dei residui	152
3.6.	Il prolungamento analitico	154
	3.6.1. Introduzione	154
	3.6.2. Unicità del prolungamento analitico	155
	3.6.3. Prolungamento di soluzioni di equazioni	157

INDICE

	3.6.4.	Il prolungamento analitico; punti regolari e singolari	159
		Esistenza del prolungamento analitico	163
	3.6.6.	Il principio di Schwarz e la funzione di Jacobi	169
	3.6.7.	Il prolungamento analitico di rappresentazioni integrali	173
		Calcolo di integrali con i residui	176
3.7.		ppi asintotici	194
		La nozione di sviluppo asintotico	194
		Operazioni su sviluppi asintotici	197
	3.7.3.	Rappresentazioni integrali e sviluppi asintotici	199
	3.7.4.	Metodo di Laplace	204
	3.7.5.	Il metodo della fase stazionaria (o di Kelvin o di Stokes)	207
		Il metodo del punto di sella	208
	3.7.7.	Equazioni differenziali e sviluppi asintotici	212
4. 5	Spazi	lineari e operatori lineari	223
		rità e non-linearità in fisica	223
4.2.	Spazi	vettoriali di dimensione finita	229
		Spazi vettoriali e vettori colonna	229
		Operatori lineari e matrici	237
		Spazi duali e vettori riga	245
	4.2.4.	Basi; trasformazioni e proprietà invarianti	247
	4.2.5.	Proprietà spettrali di operatori lineari	252
	4.2.6.	Spazi euclidei	264
	4.2.7.	Matrici hermitiane, unitarie e normali	270
	4.2.8.	Le matrici di Pauli	280
	4.2.9.	Rappresentazione polare di una matrice	281
	4.2.10	Funzioni di matrici	282
4.3.	Spazi	lineari astratti	286
	4.3.1.	Considerazioni introduttive	286
	4.3.2.	Spazi lineari: definizione e proprietà	287
	4.3.3.	Spazi metrici	290
	4.3.4.	Spazi normati	302
	4.3.5.	Spazi con prodotto scalare (o euclidei)	303
4.4.	Funzi	onali lineari e distribuzioni	311
	4.4.1.	Nozioni preliminari sugli operatori lineari	311
	4.4.2.	Funzionali lineari su spazi normati qualsiasi	312
		Distribuzioni	323
4.5.		atori lineari	353
		Esempi di operatori lineari	354
		Algebra degli operatori lineari	356
	4.5.3.	Successioni di operatori e loro proprietà di convergenza	357

METODI MATEMATICI DELLA FISICA

	4.5.4. Operatori invertibili. Inverso di un operatore	359
	4.5.4. Operatori aggiunti e autoaggiunti su spazi di Hilbert	364
	4.5.5. Operatori aggiunti e autoaggiunti su specific	366
	4.5.6. L'equazione $y = Ax$	369
	4.5.7. Operatori compatti	377
4.6.	Teoria spettrale degli operatori	377
	4.6.1. Considerazioni preliminari	379
	4.6.2. L'operatore risolvente 4.6.3. Proprietà spettrali degli operatori autoaggiunti	382
	4.6.4. Operatori unitari e loro spettro	384
	4.6.5. Proprietà spettrali degli operatori compatti	385
	4.6.6. Alcuni esempi	386
	4.6.7. Equazioni lineari alle differenze seconde	391
	4.6.8. Decomposizione spettrale	394
17	Serie e integrale di Fourier: ulteriori proprietà e applicazioni	412
4.1.	4.7.1. Proprietà della serie di Fourier	412
	4.7.2. Proprietà e applicazioni dell'integrale di Fourier	416
	4.7.2. Tropheta e applicazioni da la Cayley	427
	4.1.5. Hasomasom via operation	
5.	Equazioni integrali e differenziali	431
	Equazioni integrali	431
	5.1.1. Operatori integrali	431
	5.1.2. Tipologia delle equazioni integrali	437
	5.1.3. Equazioni di Volterra	439
	5.1.4. Equazioni di Fredholm di seconda specie (I)	443
	5.1.5. Equazioni di Fredholm di seconda specie (II)	447
	5.1.6. Equazioni differenziali ed equazioni di Volterra	455
5.2	Operatori differenziali e funzione di Green	464
	5.2.1. Introduzione; operatori differenziali del I ordine	464
	5.2.2. Operatori differenziali del II ordine	471
	5.2.3. Problemi di Sturm-Liouville	487
5.3	. Funzioni ortogonali in L_2 . Polinomi classici	504
	5.3.1. I polinomi di Legendre; i polinomi di Chebichev	504
	5.3.2. Relazioni di ricorrenza; equazioni alle differenze finite	512
	5.3.3. Polinomi di Hermite e di Laguerre	514
5.4	. Il metodo WKB	521
5.5	. Piccole oscillazioni e modi normali	526
5.6	i. Cenno all'uso dei gruppi di simmetria	540
C	Equazioni alle derivate parziali	549
6.1	. Considerazioni elementari	549
	2. Equazioni quasi-lineari del 1º ordine	554
0.2	. Liquation quantitions do a distance	

INDICE

6.3.	Equazioni quasi-lineari del 2º ordine	558
6.4.	Una formula di Green	563
6.5.	Equazioni a derivate parziali di interesse per la fisica	569
	6.5.1. Introduzione	569
	6.5.2. L'equazione di Poisson	57
	6.5.3. L'equazione di Helmholtz	572
	6.5.4. L'equazione di Fourier	573
	6.5.5. Problemi di diffrazione e scattering	577
	6.5.6. L'equazione di Schroedinger e gli stati legati	580
6.6.	Il problema del random-walk	585
	6.6.1. Problemi al discreto	585
	6.6.2. Equazioni generali dei processi stocastici stazionari	589
Bibliografia		
Ind	ice analitico	595