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Preface 

Our intention in this collection is to provide, largely through original writings, an ex
tended account of pi from the dawn of mathematical time to the present. The story of pi 
reflects the most seminal, the most serious, and sometimes the most whimsical aspects 
of mathematics. A surprising amount of the most important mathematics and a signifi
cant number of the most important mathematicians have contributed to its unfolding
directly or otherwise. 

Pi is one of the few mathematical concepts whose mention evokes a response of recog
nition and interest in those not concerned professionally with the subject. It has been a 
part of human culture and the educated imagination for more than twenty-five hundred 
years. The computation of pi is virtually the only topic from the most ancient stratum of 
mathematics that is still of serious interest to modern mathematical research. To pursue 
this topic as it developed throughout the millennia is to follow a thread through the 
history of mathematics that winds through geometry, analysis and special functions, 
numerical analysis, algebra, and number theory. It offers a subject that provides mathe
maticians with examples of many current mathematical techniques as well as a palpable 
sense of their historical development. 

Why a Source Book? 

Few books serve wider potential audiences than does a source book. To our knowledge, 
there is at present no easy access to the bulk of the material we have collected. 

Both professional and amateur mathematicians, whether budding, blooming, or begin
ning to wilt, can find in it a source of instruction, study, and inspiration. Pi yields 
wonderful examples of how the best of our mathematical progenitors have struggled with 
a problem worthy of their mettle. One of the great attractions of the literature on pi is 
that it allows for the inclusion of very modern, yet still highly accessible, mathematics. 
Indeed, we have included several prize winning twentieth century expository papers, and 
at least half of the collected material dates from the last half of the twentieth century. 

While this book is definitely a collection of literature on, and not a history of, pi, we 
anticipate that historians of mathematics will find the collection useful. As authors we believe 
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that one legitimate way of exhibiting the history of a concept is in gathering a coherent 
collection of original and secondary sources, and then to let the documents largely tell their 
own stories when placed in an appropriate historical and intellectual context. 

Equally, teachers at every level will find herein ample supplementary resources: for 
many purposes from material for special topic courses to preparatory information for 
seminars and colloquia and guidance for student projects. 

What Is Included? 

We have chosen to include roughly 70 representatives of the accumulated literature on pi. 
In the Contents each piece is accorded a very brief but hopefully illuminating description. 
This is followed by an Introduction in which we highlight some further issues raised by 
the collection. Finally, since the pre-Newtonian study of pi presents many more problems 
for the reader than does the material after the time of Huygens, we have included an 
Appendix On the Early History oj Pi. We have also provided two other Appendices. A 
Computational Chronology oj Pi offers a concise tabular accounting of computational 
records, and Selected Formulae jor Pi presents a brief compendium of some of the most 
historically or computationally significant formulas for pi. 

The pieces in the collection fall into three broad classes. 
The core of the material is the accumulated mathematical research literature of four 

millennia. Although most of this comes from the last 150 years, there is much of interest 
from ancient Egypt, Greece, India, China, and medieval Islam. We trust that readers 
will appreciate the ingenuity of our earliest mathematicians in their valiant attempts to 
understand this number. The reader may well find this material as engrossing as the later 
work of Newton, Euler, or Ramanujan. Seminal papers by Lambert, Hermite, Linde
mann, Hilbert and Mahler, to name but a few, are included in this category. Some of the 
more important papers on the number e, on zeta functions, and on Euler's constant have 
also been included as they are inextricably interwoven with the story of pi. 

The second stratum of the literature comprises historical studies of pi, based on the 
above core sources, and of writings on the cultural meaning and significance of the 
number. Some of these are present here only in the bibliography such as Petr Beckmann's 
somewhat idiosyncratic monograph, A History oj Pi. Other works on the subject are 
provided in extenso. These include Schepler's chronology of pi, some of Eves's anecdotes 
about the history of the number, and Engels' conjecture about how the ancient Egyptians 
may have computed pi. 

Finally, the third level comprises the treatments of pi that are fanciful, satirical or 
whimsical, or just wrongheaded. Although these abound, we have exercised considerable 
restraint in this category and have included only a few representative pieces such as 
Keith's elaborate mnemonic for the digits of pi based on the poem "The Raven," a recent 
offering by Umberto Eco, and the notorious 1897 attempt by the state of Indiana l to 
legislate the value of pi. 

Lennart Berggren 
Jonathan Borwein 

Peter Borwein 
Simon Fraser University 

September 6, 1996 

'Oddly enough, the third page of this bill is apparently missing from the Indiana State Library and thus may 
now exist only in facsimile! 
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Some Points of Entry 

For the reader looking for accessible points of introduction to the collection we make the 
following suggestions: 

• As a general introduction: 

35. Schepler. The Chronology oj Pi (1950) 282 
64. Borwein, Borwein, and Bailey. Ramanujan, Modular Equations, and 
Approximations to Pi or How to Compute One Billion Digits oj Pi (1989) 588 

• As an introduction to irrationality and transcendence: 

33. Niven. A Simple Proojthat 11" Is Irrational (1947) 276 
49. van der Poorten. A Prooj that Euler Missed . . . Apery's Prooj oj the 
Irrationality oj t(3) (1979) 439 
24. Hilbert. Ueber die Trancendenz der Zahlen e und 11" (1893) 226 

• As an introduction to elliptic integrals and related subjects: 

30. Watson. The Marquis and the Land Agent: A Tale oj the Eighteenth 
Century (1933) 258 
55. Cox. The Arithmetic-Geometric Mean of Gauss (1984) 481 

• As an introduction to the computational issues: 

37. Wrench, Jr. The Evolution oj Extended Decimal Approximations to 
11" (1960) 319 
47. Brent. Fast Multiple-Precision Evaluation oj Elementary Functions (1976) 424 
70. Bailey, Borwein and Plouffe. On The Rapid Computation oj Various 
Polylogarithmic Constants (1997) 663 
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Introduction 

As indicated in the Preface, the literature on pi naturally separates into three components 
(primary research, history, and exegesis). It is equally profitable to consider three periods 
(before Newton, Newton to Hilbert and the Twentieth Century) and two major stories 
(pi's transcendence and pi's computation). With respect to computation, it is also instruc
tive to consider the three significant methods which have been used: pre-calculus (Archi
medes' method of exhaustion), calculus (Machin-like arctangent formulae), and elliptic 
and modular function methods (the Gaussian arithmetic-geometric mean and the series 
of Ramanujan type). 

In the following introduction to the papers from the three periods we have resisted 
the temptation to turn our Source Book into a "History of Pi and the Methods for 
Computing it." Accordingly, we have made no attempt to give detailed accounts of any 
of the papers selected, even when the language or style might seem to render such ac
counts desirable. Instead, we urge the reader seeking an account of 'what's going on' to 
either consult a reliable general history of mathematics, such as that of C. Boyer (in its 
most recent up-date by U. Merzbach) or V. Katz, or P. Beckmann's more specialized and 
personalized history of pi. 

The Pre-Newtonian Period (Papers [1] to [15]) 

The primary sources for this period are, not surprisingly, more problematic than those of 
later periods, and for this reason we have included an additional appendix on this mate
rial. Our selections visit Egyptian, Greek, Chinese, and Medieval Arabo-European tradi
tions. We commence with an excerpt from the Rhind Mathematical Papyrus from the 
Middle Kingdom in Egypt, circa 1650 B.C., representing some of what the ancient Egyp
tians knew about mathematics around 1800 B.C. By far the most significant ancient 
work-that of Archimedes of Syracuse (277-212 B.C.), which survives under the title On 
the Measurement of the Circle follows. It is hard to overemphasize how this work domi
nated the subject prior to the advent of the calculus. 
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We continue with a study of Liu Hui's third century A.D. commentary on the Chinese 
classic Nine Chapters in the Mathematical Art and of the lost work of the fifth century 
astronomer Zu Chongzhi. Marshall Clagett's translation of Verba Filiorum, the Latin 
version of the 9th century Arabic Book oj Knowledge oj the Measurement oj Plane and 
Spherical Figures completes our first millenium extracts. 

The next selection jumps forward 500 years and discusses the tombstone of Ludolph 
van Ceulen which recorded the culminating computation of pi by purely Archimedian 
techniques to 35 places as performed by Ludolph, using 262_gons, before 1615. We com
plete this period with excerpts from three great transitional thinkers: Fran~ois Viete 
(1540-1603) whose work greatly influenced that of Fermat; John Wallis (1616-1703), to 
whom Newton indicated great indebtedness; and the Dutch polymath Christian Huygens 
(1629-1695), who correctly formalized Willebrord Snell's acceleration of Archimedes' 
method and was thus able to recapture Van Ceulen's computation with only 230-gons. In 
a part of this work, not reproduced here, Huygens vigorously attacks the validity of 
Gregory's argument for the transcendence of pi. 

From Newton to Hilbert (Papers [16] to [24]) 

These comprise many of the most significant papers on pi. After visiting Newton's contri
bution we record a discussion of the arctangent series for pi variously credited to the 
Scot James Gregory, the German Leibniz, and to the earlier Indian MMhava. In this 
period we move from the initial investigations of irrationality, by Euler and Lambert, to 
one of the landmarks of nineteenth century mathematics, the proof of the transcendence 
of pi. 

The first paper is a selection from Euler and it demonstrates Euler's almost unparal
leled-save for Ramanujan-ability to formally manipulate series, particularly series for 
pi. It is followed by an excerpt from Lambert and a discussion by Struik of Lambert's 
proof of the irrationality of pi, which is generally credited as the first proof of its 
irrationality. Euler had previously proved the irrationality of e. Lambert's proof of the 
irrationality of pi is based on a complicated continued fraction expansion. Much simpler 
proofs are to be found in [33], [48]. 

There is a selection from Shank's self-financed publication that records his hand calcu
lation of 607 digits of pi. (It is in fact correct only to 527 places, but this went unnoticed 
for almost a century.) The selection is included to illustrate the excesses that this side of 
the story has evoked. With a modern understanding of accelerating calculations this 
computation, even done by hand, could be considerably simplified. Neither Shanks's 
obsession with the computation of digits nor his error are in any way unique. Some of 
this is further discussed in [64]. 

The next paper is Hermite's 1873 proof of the transcendence of e. It is followed by 
Lindemann's 1882 proof of the transcendence of pi. These are, arguably, the most impor
tant papers in the collection. The proof of the transcendence of pi laid to rest the possibil
ity of "squaring the circle," a problem that had been explicit since the late 5th c. B.C. 
Hermite's seminal paper on e in many ways anticipates Lindemann, and it is perhaps 
surprising that Hermite did not himself prove the transcendence of pi. The themes of 
Hermite's paper are explored and expanded in a number of later papers in this volume. 
See in particular Mahler [42]. The last two papers offer simplified proofs of the transcen
dence. One is due to Weierstrass in 1885 and the other to Hilbert in 1893. Hilbert's elegant 
proof is still probably the simplest proof we have. 
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The Twentieth Century (Papers [26] to [70]) 

The remaining forty-five papers are equally split between analytic and computational 
selections, with an interweaving of more diversionary selections. 

On the analytic side we commence with the work of Ramanujan. His 1914 paper, [29], 
presents an extraordinary set of approximations to pi via "singular values" of elliptic 
integrals. The first half of this paper was well studied by Watson and others in the 1920s 
and 1930s, while the second half, which presents marvelous series for pi, was decoded 
and applied only more than 50 years later. (See [61], [62], [63].) Other highlights include: 
Watson's engaging and readable account of the early development of elliptic functions, 
[30]; several very influential papers by Kurt Mahler; Fields Medalist Alan Baker's 1964 
paper on "algebraic independence of logarithms," [40]; and two papers on the irrational
ity of t(3) ([48], [49]) which was established only in 1976. 

The computational selections include a report on the early computer calculation of pi
to 2037 places on ENIAC in 1949 by Reitwiesner, Metropolis and Von Neumann [34] and 
the 1961 computation of pi to 100,000 places by Shanks and Wrench [38], both by 
arctangent methods. Another highlight is the independent 1976 discovery of arithmetic
geometric mean methods for the computation of pi by Salamin and by Brent ([46], [47], 
see also [57]). Recent supercomputational applications of these and related methods by 
Kanada, by Bailey, and by the Chudnovsky brothers are included (see [60] to [64]). As of 
going to press, these scientists have now pushed the record for computation of pi beyond 
17 billion digits. (See Appendix II.) One of the final papers in the volume, [70], describes 
a method of computing individual binary digits of pi and similar polylogarithmic con
stants and records the 1995 computation of the ten billionth hexadecimal digit of pi. 


