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Preface 

This book consists of two parts, different in form but similar in spirit. 
The first, which comprises chapters 0 through 9, is a revised and somewhat 
enlarged version of the 1972 book Geometrie Differentielle. The second 
part, chapters 10 and 11, is an attempt to remedy the notorious absence in 
the original book of any treatment of surfaces in three-space, an omission 
all the more unforgivable in that surfaces are some of the most common 
geometrical objects, not only in mathematics but in many branches of 
physics. 

Geometrie Differentielle was based on a course I taught in Paris in 1969-
70 and again in 1970-71. In designing this course I was decisively influ
enced by a conversation with Serge Lang, and I let myself be guided by 
three general ideas. First, to avoid making the statement and proof of 
Stokes' formula the climax of the course and running out of time before 
any of its applications could be discussed. Second, to illustrate each new 
notion with non-trivial examples, as soon as possible after its introduc
tion. And finally, to familiarize geometry-oriented students with analysis 
and analysis-oriented students with geometry, at least in what concerns 
manifolds. 

To achieve all of this in a reasonable amount of time, I had to leave out 
a detailed review of differential calculus. The reader of this book should 
have a good calculus background, including multivariable calculus and some 
knowledge of forms in Rn (corresponding to pages 1-85 of [Spi65j, for 
example). A little integration theory also helps. For more details, see 
chapter 0, where all of the necessary notions and results from calculus, 
exterior algebra and integration theory have been collected for the reader's 
convenience. 
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I confess that, in choosing the contents and style of Geometrie Differen
tielle, I emphasized the esthetic side, trying to attract the reader with 
theorems that are natural and simple to state, instead of providing an 
exhaustive exposition of the fundamentals of differentiable manifolds. I 
also decided to include a larger number of global results, rather than giving 
detailed proofs of local results. 

More specifically, here are some of the contents of chapters 1 through 9: 
-We start with a somewhat detailed treatment of differential equations, 

not only because they are used in several parts of the book, but because 
they tend to be given less an less weight in the curriculum, at least in 
France. 

-Submanifolds of Rn, although sometimes included in calculus courses, 
are then presented in detail, to pave the way for abstract manifolds. 

-Next we define abstract (differentiable) manifolds; they are the basic 
stuff of differential geometry, and everything else in the book is built on 
them. 

-Five examples of manifolds are then given and resurface several times 
along the book, thus serving as unifying threads: spheres, real projec
tive spaces, tori, tubular neighborhoods of submanifolds of Rn, and one
dimensional manifolds, i.e., curves. Tubular neighborhoods and normal 
bundles, in particular, form a class of examples whose study is non-trivial 
and illustrates a number of more or less refined techniques (chapters 2, 6, 
7 and 9). 

-Several important topics, for example, Morse theory and the classifi
cation of compact surfaces, are discussed without proofs. These "cultural 
digressions" are meant to give the reader a more complete picture of dif
ferential geometry and how it relates with other subjects. 

-Two chapters are devoted to curves; this is, in my opinion, justified, 
because curves are the simplest of manifolds and the ones for which we 
have the most complete results. 

-The exercises consist of fairly concrete examples, except for a few that 
ask the reader to prove an easy result stated in the text. They range from 
very easy to very difficult. They are in large measure original, or at least 
have not appeared in French books. To tackle the more difficult exercises 
the reader can refer to [Spi79, vol. I] or [Die69]. 

* * * 
In deciding to add to the original book a treatment of surfaces, I faced a 

dilemma: if I were to maintain the leisurely style of the first nine chapters, I 
would have to limit myself to the basics or make the book far too long. This 
is especially true because one cannot talk about surfaces in depth without 
distinguishing between their intrinsic and extrinsic geometries. Once again 
the desire to give the reader a global view prevailed, and the solution I 
chose was to be much more terse and write only a kind of "travel guide," 
or extended cultural digression, omitting details and proofs. Given the 
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abundance of good works on surfaces (see the introduction to chapter 10) 
and the great number of references sprinkled throughout our material, I feel 
that the interested reader will have no-difficulty in filling in the picture. 

Chapter 10, then, covers the local theory of surfaces in R 3 , both intrinsic 
(the metric) and extrinsic (the embedding in space). The intrinsic geometry 
of surfaces, of course, is the simplest manifestation of riemannian geometry, 
but I have resisted the temptation to talk about riemannian geometry in 
higher dimension, even though the field has witnessed spectacular advances 
in recent years. 

Chapter 11 covers global properties of surfaces. In particular, we dis
cuss the Gauss-Bonnet formula, surfaces of constant or bounded curvature, 
closed geodesics and the cut locus (part I, intrinsic questions); minimal sur
faces, surfaces of constant mean curvature and Weingarten surfaces (part 
II, extrinsic questions). 

* * * 
The contents of this book can serve as a basis for several different courses: 

a one-year junior- or senior-level course, a one-semester honors course with 
emphasis on forms, a survey course on surfaces, or yet an elementary course 
emphasizing chapters 8 and 9 on curves, which can stand more or less on 
their own, together with section 7.6. 

The reader who wants to go beyond the contents of this book will find 
a number of references inside, especially in chapters 10 and 11, but here 
are $ome general ones: [Mil63] is elementary, but a pleasure to read, as is 
[Mil69], which covers not only Morse theory but many deep applications 
to differential geometry; [Die69], [SteM], [Hic65] and [Hu69] cover much of 
the same ground as as this book, with differences in emphasis; [War71] has 
a good treatment of Lie groups, which are only mentioned in this work; 
[Spi79], whose first volume largely overlaps with our chapters 1 to 9, goes 
on for four more and is especially lucid in offering different approaches 
to riemannian geometry and expounding its historical development; and 
[KN69] is the ultimate reference work. 

I would like to thank Serge Lang for help in planning the contents of chap
ters 0 to 9, the students and teaching assistants of the 1969-1970 and 1970-
1971 courses for their criticism, corrections and suggestions, F. Jabreuf for 
writing up sections 7.7 and 9.8, J. Lafontaine for writing up numerous ex
ercises and for the proof of the lemma in 9.5. For feedback on the two new 
chapters I'm indebted to thank D. Bacry, J.-P. Bourguignon, J. Lafontaine 
and J. Ferrand. 

Finally, I would like to thank Silvio Levy for his accurate and quick 
translation, and for pointing out several errors in the original. I would 
also like to thank Springer-Verlag for taking up the translation and the 
publication of this book. 

Marcel Berger 
I.H.E.S, 1987 
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