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Preface 

The Fourier transform and the Laplace transform of a positive measure share, 
together with its moment sequence, a positive definiteness property which 
under certain regularity assumptions is characteristic for such expressions. 
This is formulated in exact terms in the famous theorems of Bochner, 
Bernstein-Widder and Hamburger. All three theorems can be viewed as 
special cases of a general theorem about functions qJ on abelian semigroups 
with involution (S, +, *) which are positive definite in the sense that the 
matrix (qJ(sJ + Sk» is positive definite for all finite choices of elements 
St, ... , Sn from S. The three basic results mentioned above correspond to 
(~, +, x* = -x), ([0, 00[, +, x* = x) and (No, +, n* = n). 

The purpose of this book is to provide a treatment of these positive 
definite functions on abelian semigroups with involution. In doing so we also 
discuss related topics such as negative definite functions, completely mono­
tone functions and Hoeffding-type inequalities. We view these subjects as 
important ingredients of harmonic analysis on semigroups. It has been our 
aim, simultaneously, to write a book which can serve as a textbook for an 
advanced graduate course, because we feel that the notion of positive 
definiteness is an important and basic notion which occurs in mathematics 
as often as the notion of a Hilbert space. The already mentioned Laplace and 
Fourier transformations, as well as the generating functions for integer­
valued random variables, belong to the most important analytical tools in 
probability theory and its applications. Only recently it turned out that 
positive (resp. negative) definite functions allow a probabilistic characteriza­
tion in terms of so-called Hoeffding-type inequalities. 

As prerequisites for the reading of this book we assume the reader to be 
familiar with the fundamental principles of algebra, analysis and probability, 
including the basic notions from vector spaces, general topology and abstract 
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measure theory and integration. On this basis we have included Chapter 1 
about locally convex topological vector spaces with the main objective of 
proving the Hahn-Banach theorem in different versions which will be used 
later, in particular, in proving the Krein-Milman theorem. We also present 
a short introduction to the idea of integral representations in compact 
convex sets, mainly without proofs because the only version of Choquet's 
theorem which we use later is derived directly from the Krein-Milman 
theorem. For later use, however, we need an integration theory for measures 
on Hausdorff spaces, which are not necessarily locally compact. Chapter 2 
contains a treatment of Radon measures, which are inner regular with respect 
to the family of compact sets on which they are assumed finite. The existence 
of Radon product measures is based on a general theorem about Radon 
bimeasures on a product of two Hausdorff spaces being induced by a Radon 
measure on the product space. Topics like the Riesz representation theorem, 
adapted spaces, and weak and vague convergence of measures are likewise 
treated. 

Many results on positive and negative definite functions are not really 
dependent on the semigroup structure and are, in fact, true for general 
positive and negative definite matrices and kernels, and such results are 
placed in Chapter 3. 

Chapters 4-8 contain the harmonic analysis on semigroups as well as a 
study of many concrete examples of semigroups. We will not go into detail 
with the content here but refer to the Contents for a quick survey. Much 
work is centered around the representation of positive definite functions 
on an abelian semigroup (S, +, *) with involution as an integral of semi­
characters with respect to a positive measure. It should be emphasized that 
most of the theory is developed without topology on the semigroup S. The 
reason for this is simply that a satisfactory general representation theorem for 
continuous positive definite functions on topological semigroups does not 
seem to be known. There is, of course, the classical theory of harmonic 
analysis on locally compact abelian groups, but we have decided not to 
include this in the exposition in order to keep it within reasonable bounds 
and because it can be found in many books. 

As described we have tried to make the book essentially self-contained. 
However, we have broken this principle in a few places in order to obtain 
special results, but have never done it if the results were essential for later 
development. Most of the exercises should be easy to solve, a few are more 
involved and sometimes require consultations in the literature referred to. 
At the end of each chapter is a section called Notes and Remarks. Our aim has 
not been to write an encyclopedia but we hope that the historical comments 
are fair. 

Within each chapter sections, propositions, lemmas, definitions, etc. are 
numbered consecutively as 1.1, 1.2, 1.3, ... in §1, as 2.1,2.2,2.3, ... in §2, 
and so on. When making a reference to another chapter we always add the 
number of that chapter, e.g. 3.1.1. 
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We have been fascinated by the present subject since our 1976 paper and 
have lectured on it on various occasions. Research projects in connection 
with the material presented have been supported by the Danish Natural 
Science Research Council, die Thyssen Stiftung, den Deutschen 
Akademischen Austauschdienst, det Danske Undervisningsministerium, as 
well as our home universities. Thanks are due to Flemming Topsq,e for his 
advice on Chapter 2. We had the good fortune to have Bettina Mann type 
the manuscript and thank her for the superb typing. 

March 1984 CHRISTIAN BERG 

JENS PETER REus CHRISTENSEN 
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