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Preface

Nonlinear elliptic equations and systems are a classical field of analysis,
with many applications in differential geometry, continuum mechanics, and
probability theory; an important future branch will be their applications to
microelectronics.

The most important analytical tools in the field of nonlinear partial
differential equations and systems up to, say, 1955 are presented in the books
of C. B. Morrey [79] and O.A. Ladyzhenskaya, N.N. Ural'tseva [66]. The
bulk of the development for general nonlinear elliptic systems is presented
in M. Giaquinta, E. Giusti [41], D. Gilbarg, N.S. Trudinger [46], later in
M. Giaquinta [40]. Concerning applications to differential geometry, we men-
tion the books of M. Giaquinta, S. Hildebrandt [42].

The purpose of this book is to present some of the developments that are
not covered in the above books and are promising fields for applications and
research.

The book is to a large extent self-contained, with the restriction that
the linear theory—Schauder estimates and Campanato theory—is not pre-
sented. The reader is expected to be familiar with functional-analytic tools,
like the theory of monotone operators. References are given in the text to
any techniques that are used. The first two chapters contain general methods
and auxiliary lemmas. The expert might like our approach to the theorem
of De Giorgi—Nash concerning C'*-regularity of solutions to nonlinear scalar
equations via the hole-filling method, and our proof of Harnack’s inequality
without using the John—Nirenberg theorem on functions with bounded mean
oscillation.

Chapters 4 and 5 deal with diagonal elliptic systems, which have impor-
tant applications to differential geometry; however, in order to be complemen-
tary to the books of Giaquinta-Hildebrandt, we present only the applications
to stochastic problems, where the researcher finds challenging open problems
with a broad range of degree of difficulty. In fact, the treatment here is more
complete than what is available in the literature.

Chapter 6 deals with Helein’s proof of the regularity of harmonic mappings
on two-dimensional manifolds. We avoid a more extensive study of harmonic
mappings, for which we refer to the books of J. Jost [60], M. Giaquinta,
S. Hildebrandt [42] (see also J. Eells, J.H. Sampson [22]).
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Chapter 7 presents the standard Van Roosbroek equations in
semi-conductor theory and a special model that is related to the avalanche
effect. We admit that this choice represents a limited sample compared with
the range of interesting new open problems waiting to be solved, but in
the interest of brevity we have cut the exposition short. In chapter 8 we
present recent results for the regularity problem of the Navier—-Stokes equa-
tion. Clearly, this chapter is not an introduction to mathematical fluid
dynamics, for which the reader should refer to the standard book of
O.A. Ladyzhenskaya, V.A. Solonnikov, N.N. Ural’tseva [67] or, recently,
P.L. Lions [72] and G.P. Galdi [36]. We have included this chapter in the
book because of surprising similarities of the analytical tools to those in
the chapter on diagonal systems. In Chapter 9 we collect results concerning
strongly coupled elliptic systems, in particular the theory of A. Koshelev
[63] concerning sufficient conditions for regularity involving eigenvalues.
Chapter 10 presents elements of a dual theory of elliptic systems, the
motivation coming from simple models in elasto plasticity. It seems that many
techniques in elliptic analysis have a dual analogue. For example, we present a
dual proof and formulation of the almost everywhere regularity of solutions of
elliptic systems. Chapter 11 contains a short approach to plasticity theory; for
the physical background we refer to the books of G. Duvaut, J.L. Lions [15],
R. Temam [101] and P. Le Tallec [69]. We believe that the approach via
the Norton—Hoff approximation is a recommendable introduction for new-
comers who have knowledge of Sobolev spaces. We would like to emphasize
that much of the progress concerning the time-dependent Prandtl-Reuss law
and regularity properties of its solution has been made by using the dual
theory of elliptic equations. This is why it is presented here, although it is a
“time”-dependent model, which is in principle outside the scope of this book.

We would like to thank Zamin Igbal, who carefully read the draft of the
book and improved the English to a great extent, and also Josef Malek, who
read various parts.

A warm thank you to Chantal Delabarre, who improved the limited
LaTeX of the authors, and to Springer-Verlag for publishing this book.

Alain Bensoussan
Jens Frehse
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