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Preface 

The origins of the mathematics in this book date back more than two thou­
sand years, as can be seen from the fact that one of the most important 
algorithms presented here bears the name of the Greek mathematician Eu­
clid. The word "algorithm" as well as the key word "algebra" in the title of 
this book come from the name and the work of the ninth-century scientist 
Mohammed ibn Musa al-Khowarizmi, who was born in what is now Uzbek­
istan and worked in Baghdad at the court of Harun al-Rashid's son. The 
word "algorithm" is actually a westernization of al-Khowarizmi's name, 
while "algebra" derives from "al-jabr," a term that appears in the title of 
his book Kitab al-jabr wa'l muqabala, where he discusses symbolic methods 
for the solution of equations. This close connection between algebra and al­
gorithms lasted roughly up to the beginning of this century; until then, the 
primary goal of algebra was the design of constructive methods for solving 
equations by means of symbolic transformations. 

During the second half of the nineteenth century, a new line of thought 
began to enter algebra from the realm of geometry, where it had been 
successful since Euclid's time, namely, the axiomatic method. The starting 
point of the axiomatic approach to algebra is the question, What kind of 
object is a symbolic solution to an algebraic equation? To use a simple 
example, the question would be not only, What is a solution of ax + b = 0, 
but also, What are the properties of the objects a and b that allow us to 
form the object -b/a? The axiomatic point of view is that these are objects 
in a surrounding algebraic structure which determines their behavior. The 
algebraic structure in turn is described and determined by properties that 
are laid down in a set of axioms. 

The foundations of this approach were laid by Richard Dedekind, Ernst 
Steinitz, David Hilbert, Emmy Noether, and many others. The axiomatic 
method favors abstract, non-constructive arguments over concrete algorith­
mic constructions. The former tend to be considerably shorter and more 
elegant than the latter. Before the arrival of computers, this advantage 
more or less settled the question of which one of the two approaches was to 
be preferred: the algorithmic results of mathematicians like Leopold Kro­
necker and Paul Gordan were way beyond the scope of what could be done 
with pencil and paper, and so they had little to offer except being more 
tedious than their non-constructive counterparts. 

On the other hand, it would be a mistake to construe the axiomatic and 
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the algorithmic method as being irreconcilably opposed to each other. As 
a matter of fact, significant algorithmical results in algebra were proved by 
the very proponents of axiomatic thinking such as David Hilbert and Emmy 
Noether. Moreover, mathematical logic-a field that centers around the ax­
iomatic method-made fundamental contributions to algorithmic mathe­
matics in the 1930s. Alan Turing and Alonzo Church for the first time made 
precise the concept of computability in what is known as Church's thesis, or 
also as the Church-Turing thesis. Kurt Godel proved that certain problems 
inherently elude computability and decidability. This triggered a wave of 
new results by Alfred Tarski and other members of the Polish school of logi­
cians on the algorithmic solvability or unsolvability of algebraic problems. 
Again, because of their enormous complexity, these algorithms were of no 
practical significance whatsoever. As a result, the beginning second half 
of this century saw an axiomatic and largely non-constructive approach to 
algebra firmly established in both research and teaching. 

The arrival of computers and their breathtaking development in the last 
three decades then prompted a renewed interest in the problem of effective 
constructions in algebra. Many constructive results from the past were 
unearthed, often after having been rediscovered independently. Moreover, 
the development of new concepts and results in the area has now established 
computer algebm as an independent discipline that extends deeply into both 
mathematics and computer science. 

There are many good reasons for viewing computer algebra as an inde­
pendent field. However, the fact that the mathematical part of it is some­
what separated from the work of pure algebraists is, in our opinion, rather 
unfortunate and not at all justified. We feel that this situation must and 
will change in the near future. As a matter of fact, computational aspects 
are beginning to show up more and more in undergraduate-level textbooks 
on abstract algebra. There is, however, one particular contribution made 
by computational algebra that is in most dire need of being introduced in 
the mathematical mainstream, namely, the theory of Grabner bases. 

Grobner bases were introduced by Bruno Buchberger in 1965. The ter­
minology acknowledges the influence of Wolfgang Grobner on Buchberger's 
work. To the reader who has any background in abstract algebra at all, the 
basic idea behind the theory is easily explained. Suppose you are given a 
finite set of polynomials in one variable over a field and you wish to decide 
membership in the ideal generated by these polynomials in the polynomial 
ring. What you must do is compute the greatest common divisor of the 
given polynomials by means of the Euclidean algorithm. Any given poly­
nomial then lies in the ideal in question if and only if its remainder upon 
division by this gcd equals zero. Grobner basis theory is the successful at­
tempt to imitate this procedure for polynomials in several variables. Given 
a finite set of multivariate polynomials over a field, the Buchberger algo­
rithm computes a new set of polynomials, called a Grobner basis, which 
generates the same ideal as the original one and is an analogue to the gcd 
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of the unvariate case in the following sense. A given polynomial lies in the 
ideal generated by the Grabner basis if and only if a suitably defined normal 
form of the polynomial with respect to the Grabner basis equals zero. The 
computation of this normal form is a rather straightforward generalization 
of long division of polynomials, except that we are looking at the division 
of one polynomial by a set of finitely many polynomials. 

Considering both the outstanding importance of the Euclidean algorithm 
for the computation of gcd's of univariate polynomials and the scope of 
its implications in pure and computational algebra, it should come as no 
surprise that its multivariate analogue, the Buchberger algorithm for the 
computation of Grabner bases, is of similar relevance. It leads to solutions 
to a large number of algorithmic problems that are related to polynomials 
in several variables. Most notably, algorithms that involve Grabner basis 
computations allow exact conclusions on the solutions of systems of non­
linear equations, such as the (geometric) dimension of the solution set, the 
exact number of solutions in case there are finitely many, and their actual 
computation with arbitrary precision. 

Most of the problems for which Grabner bases provide algortihmic s0-

lutions were already known to be solvable in principle. Grabner bases are 
a giant step forward insofar as actual implementations have become fea­
sible and have actually provided answers to physicists and engineers. On 
the other hand, many problems of no more than moderate input size still 
defy computation. The mathematics behind the algorithms as well as the 
hardware that performs them have a long way to go before these problems 
can be considered solved to the satisfaction of the user. 

The purpose of this book is to give a self-contained, mathematically 
sound introduction to the theory of Grabner bases and to some of its ap­
plications, stressing both theoretical and computational aspects. 

A book that would start out with Grabner basis theory would have to 
direct its readers to a source for a large number of elementary results on 
commutative rings and, more specifically, on polynomials in several vari­
ables. These are of course all available somewhere, and certainly known to 
the mature mathematician. However, we found ourselves unable to name a 
reasonably small number of books that would enable the beginning grad­
uate student or the non-mathematician with an interest in Grabner bases 
to aquire this background within a reasonable amount of time. We have 
therefore decided to write a book that requires no prerequisites other than 
the mathematical maturity of an advanced undergraduate student. In partic­
ular, no prior knowledge of abstract algebra whatsoever is assumed. Under 
the European system, this means that the book can be used after the sec­
ond semester of mathematics or computer science. People with different 
backgrounds will enter such a book at different points; for more details, we 
refer the reader to the comments on "How to Use This Book" on p. xi. 

As for the overall concept, the book traverses three stages. Chapters 0-3 
provide pre-Grabner-bases results on commutative rings with an emphasis 
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on polynomial rings, as well as the basics on vector spaces and modules. 
Chapters 4 and 5 then develop Grobner basis theory. The definition of a 
Grobner basis does not show up until Section 5.2, but the material of Chap­
ter 4 and Section 5.1 is rather specific to Grobner bases already. Chapters 
6-10 cover a wide range of applications, intertwined with a development of 
post-Grobner-bases algebra. Algorithms are presented using a semi-forma­
lism that is self-explanatory even to those with no background in computer 
programming. Strong emphasis is placed on a mathematically sound· veri­
fication of the algorithms. Each chapter closes with a "Notes" section that 
puts the material in a larger mathematical perspective by tracing its his­
torical development and providing references to the literature. 

Needless to say, the list of omissions is tremendous. If it is possible at all 
to write the definitive book on computational algebra, then this is not it. 

More specifically, the choice of the material and the reasons for mak­
ing it are as follows. The introductory chapters 0-3 are written mainly 
for the purpose of providing the necessary background for Grobner bases 
and their applications. The solutions to algorithmic problems such as fac­
torization of polynomials given there are strictly "in principle" solutions; 
implementations of any practical value involve considerably more mathe­
matics. Our treatment is thus incomplete in a sense; on the other hand, 
we are laying firm mathematical foundations which can also be helpful for 
the reader who wishes to proceed to the advanced literature on topics in 
computational algebra other than Grobner bases. 

Chapters 4 and 5, the main chapters on Grobner bases, are fairly com­
plete both theoretically and algorithmically. The theory of orders and re­
duction relations of Chapter 4 is rather well-rounded. In Chapter 5, the 
theoretical aspects of Grobner bases are explored extensively. The Buch­
berger algorithm for their computation is presented first in an "in principle" 
version and then in two real-life versions. The only major omission in these 
two chapters-and it is one that actually pervades the entire book-is the 
absence of any complexity theory, that is, the discussion of the time and 
space that an algorithm requires as a function of the size of its input. This 
omission is clearly a serious one. It was not made because we consider the 
issue to be of minor importance. On the contrary, we feel that complexitiy 
theory is too important an issue to be dealt with lightly. We hope that 
our effort will motivate others to treat these problems comprehensively in 
some kind of book format. A brief overview of complexity results for Grob­
ner basis constructions is given in the appendix "Outlook on Advanced and 
Related Topics" at the end of the book. 

Once Grobner bases have been introduced, there is an almost limitless 
choice of topics that one could cover. Our focus in Chapters 6-10 is on the 
theory of polynomial ideals. A large number of ready-to-use algorithms is 
presented. FUrthermore, we demonstrate how Grobner bases can often be 
used to give elegant an enlightening proofs of classical results, for example, 
in the area of algebraic field extensions. This shows that Grobner bases are 
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not only a powerful tool for actual computations, but also a cornerstone of 
commutative algebra. 

The book closes with an appendix that tries to at least partly make up 
for the incompleteness of this book. Here, we have given brief summaries of 
a number of recent results that surround or extend Grabner basis theory. 
Each section explains a problem, outlines the solution, and provides a guide 
to the original literature. 

The authors wish to thank Johannes Grabmeier, Alexander Knapp, Frank 
Lippold, Wolfgang Mark, Christian Munch, Michael Pesch, Gernot Schreib, 
and Thomas Sturm for reading parts of the manuscript. Gerlinde Kollmer 
kept us organized and did a lot of work in 1B>TEX along the way. The typeset­
ting of the final manuscript was done by the first author in 1B>TEX-with the 
additional use of several AMSFonts---on an Atari Mega 2. Special thanks 
is due to Michael Pesch for his superb software consulting, and to Thomas 
Sturm for his competence and dedication. 

Passau, Germany T.B., V.W., H.K. 
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Sections 6.1, 6.4, and 7.5-7.7 are exempt from this flow diagram. They 
can be postponed or dropped altogether; details are to be found at the 
beginning of each of these sections. 

Prerequisites 

Chapters 0-3 of this book are written for the reader with very little or 
no background in abstract algebra. The prerequisite for this part is the 
mathematical maturity of an advanced undergraduate student. You may 
skip these chapters if you can answer the following questions. 

What is a commutative ring with unity, and when is it a field? 

What is an ideal, and what is a residue class ring? 

What does the Euclidean algorithm do with two univariate polyno­
mials over a field, and how does it do it? 

What is a vector space? 

If you failed the test, then you must read Chapters 0 and 1 and the first 
two sections of Chapter 2 to be able to understand the main part on Grob­
ner bases (Chapters 4 and 5). If you decide to continue on past Chapter 5 
into the applications, you will soon feel the need to read the rest of Chapter 
2 as well as Chapter 3. 

If you passed the test or know you could, then for you, the book begins 
with Chapter 4. If you need to go back to one of the first four chapters 
for some specific definition or result that you have trouble with, then the 
index and the extensive cross-referencing of this book should make it easy 
for you to do so. 

Exercises 

There are two types of exercises: those printed in normal size, and those 
in small print. Normal size indicates that these exercises have the status of 
lemmas whose proof is left to the reader. Their statements will be used later 
on. None of them are hard; working them is also a good way of making sure 
that you are ready to grasp the material that is being presented next. Small 
print indicates exercises in the usual sense of application and extension of 
what has just been covered. The difficulty ranges from easy to moderate. 
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Use of Computer Algebra Systems 

It is possible to view this as a mathematics textbook that can be rearl 
without the use of a computer. On the other hand, most of the mathematics 
presented here is application-oriented, and seeing things happen or making 
things happen on the screen will greatly enhance the experience of studying 
the material. 

If a computer algebra system is at hand, then there are basically two 
things that you can do along with reading this book. Firstly, if an algorithm 
that you have just learned about is available on your system, you can 
simply run it on examples that you make up, get from the exercises, or 
find somewhere else. Although this is somewhat less than creative, you 
will be surprised how much it helps your understanding and motivation. 
The other thing is to implement algorithms from the book. Doing so from 
scratch will in general be a major endeavor. However, many algorithms in 
computational algebra are such that they allow a top-down approach, where 
good results can be obtained by tying together lower-level algorithms with 
relatively little effort. In order to do this, you need a system that provides 
a library of polynomial algorithms and the possibility to use them in your 
own programs. If you implement an algorithm that was alrearly part of 
your system, then you have worked a useful exercise; if it was not, then you 
have extended the capabilities of your system. 

Commercially available computer algebra systems that are suited to be 
used along with this book include Axiom, Macsyma, Maple, Mathematica, 
and Reduce. A system that the authors of this book recommend is MAS 
by Heinz Kredel. MAS makes available for interactive and programming 
use an extensive library of polynomial algorithms, including those that 
were developed for the system ALDES/SAC-2. In arldition to such classics 
as greatest common divisors, factorization, and real root isolation, you will 
find the Buchberger algorithm for the computation of Grabner bases as well 
as applications thereof such as ideal decomposition and real roots of poly­
nomial systems. Of the more recent variants of the Buchberger algorithm, 
the non-commutative case (polynomial rings of solvable type), comprehen­
sive Grabner bases, and Grabner bases over principal ideal domains and 
Euclidean domains are implemented. Programming in MAS is in a language 
that is based on MODULA-2. User-defined programs can be run interac­
tively; if a MODULA-2 compiler is available, they can also be compiled, 
thus allowing a fair comparison between existing and user-defined versions 
of algorithms. MAS is available free of charge per anonymous ftp from 
alice.fmi.uni-passau.de and via World Wide Web from http://alice.fmi.uni­
passau.de/mas.htm. Currently available is version 1.0 for UN*X worksta­
tions (e.g. IBM RS6000/AIX, HP 9000/HP-UX, NextStep, Sun Sparc with 
a Modula-2 to C translator) and PCs 386,486,586 (DOS, OS2 and Linux). 
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Use as a Text book 

It should be clear from the above discussion of prerequisites that this book 
allows a variety of uses as a textbook on the advanced undergraduate as well 
as the graduate level. There is at present no established way of including 
Grobner bases in the mathematics/computer science curriculum. The fact 
that this book requires practically no specific prior knowledge should make 
it possible to experiment in this regard. 

One conceivable situation that deserves perhaps some comment is the 
following. Suppose you are at a point where the basic theory of commutative 
rings and polynomial rings is available. Now you wish to cover Grobner 
bases, but you do not have the time and/or the desire to get into the theory 
of orders and reduction relations to the extent that they are treated in 
Chapter 4. You may then essentially start with Section 4.5, which deals with 
reduction relations and Newman's lemma. This requires only a moderate 
amount of material from the earlier sections of Chapter 4, and you should 
have no trouble providing this material. You then jump ahead to Section 
5.1. You will need some more material from Chapter 4, most of which is 
obvious and easily provided, such as the definition of a quasi-order. The 
only deeper results that you will need are Dickson's lemma, whose proof you 
lift from the proof of Proposition 4.49, the well-foundedness of term orders, 
which you prove using the comments in Exercise 4.63, and the properties 
of the induced quasi-order on the polynomial ring, which you transfer from 
Lemma 4.67 and Theorem 4.69. 

Abbreviations 

The following abbreviations will be used throughout this book. 

cf., (Latin confer) compare 
e.g., (Latin exempli gratia) for example 
etc., (Latin et cetera) and so on 
i.e., (Latin id est) that is 
iff, if and only if 
w.l.o.g., without loss of generality 
w.r.t., with respect to 

Moreover, a 0 will indicate the end of a proof. 

Numberings 

Chapters and sections are numbered in the obvious way: Chapter 5, for 
example, consists of Sections 5.1-5.6. Definitions, lemmas, propositions, 
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theorems, corollaries, and exercises are treated as one type of item and 
numbered consecutively within each chapter: Chapter 5 contains Exercise 
5.1, Theorem 5.2, etc. Due to the fact that there is such an item on virtually 
every page, this should make it easy to locate referenced items. Algorithms 
are given in tables in order to prevent them from running across a page­
break; these tables are also numbered within each chapter. 
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