DIMACS

Series in Discrete Mathematics and Theoretical Computer Science

Volume 39

Proof Complexity and Feasible Arithmetics

DIMACS Workshop April 21–24, 1996

Paul W. Beame Samuel R. Buss Editors

NSF Science and Technology Center in Discrete Mathematics and Theoretical Computer Science A consortium of Rutgers University, Princeton University, AT&T Labs, Bell Labs, and Bellcore

Contents

Plausibly hard combinatorial tautologies JEREMY AVIGAD	1
More on the relative strength of counting principles PAUL BEAME AND SØREN RIIS	13
Ranking arithmetic proofs by implicit ramification STEPHEN J. BELLANTONI	37
Lower bounds on Nullstellensatz proofs via designs SAMUEL R. BUSS	59
Relating the provable collapse of P to NC^1 and the power of logical theories Stephen Cook	73
On PHP st-connectivity, and odd charged graphs PETER CLOTE AND ANTON SETZER	93
Descriptive complexity and the W hierarchy Rodney G. Downey, Michael R. Fellows, and Kenneth W. Regan	119
Lower bounds on the sizes of cutting plane proofs for modular coloring principles XUDONG FU	135
Equational calculi and constant depth propositional proofs JAN JOHANNSEN	149
Exponential lower bounds for semantic resolution STASYS JUKNA	163
Bounded arithmetic: Comparison of Buss' witnessing method and Sieg's Herbrand analysis BARBARA KAUFFMANN	173
Towards lower bounds for bounded-depth Frege proofs with modular connectives	
Alexis Maciel and Toniann Pitassi	195
A quantifier-free theory based on a string algebra for NC^1 François Pitt	229

viii CONTENTS

A propositional proof system for R_2^i Chris Pollett	253
Algebraic models of computation and interpolation for algebraic proof systems	
Pavel Pudlák and Jiří Sgall	279
Self-reflection principles and NP-hardness DAN E. WILLARD	297