Heinz Bauer

Measure and Integration Theory

Translated from the German by Robert B. Burckel

Walter de Gruyter Berlin · New York 2001

Table of Contents

Preface		vii
Introduction		ix
Notat		xi
Chan	ter I Measure Theory	1
§ 1.	σ -algebras and their generators	2
§ 2.	Dynkin systems	- 5
§ 3.	Contents, premeasures, measures	8
§ 4.	Lebesgue premeasure	14
§ 4. § 5.	Extension of a premeasure to a measure	18
§ 6.	Lebesgue-Borel measure and measures on the number line	26
§ 7.	Measurable mappings and image measures	34
§ 8.	Mapping properties of the Lebesgue–Borel measure	38
Chan	oter II Integration Theory	49
§ 9.	Measurable numerical functions	49
§ 10.	Elementary functions and their integral	53
§ 11.	The integral of non-negative measurable functions	57
§ 12.	Integrability	64
§ 13.	Almost everywhere prevailing properties	70
§ 14.	The spaces $\mathscr{L}^p(\mu)$	74
§ 15.	Convergence theorems	79
§ 16.	Applications of the convergence theorems	88
§ 17.	Measures with densities: the Radon–Nikodym theorem	96
-	Signed measures	107
§ 19.	Integration with respect to an image measure	110
§ 20.	Stochastic convergence	112
§ 21.	Equi-integrability	121
Chap	ter III Product Measures	132
§ 22.	Products of σ -algebras and measures	132
§ 23.	Product measures and Fubini's theorem	135
§ 24.	Convolution of finite Borel measures	147
Chap	oter IV Measures on Topological Spaces	152
§ 25.	Borel sets, Borel and Radon measures	152
§ 26.	Radon measures on Polish spaces	157
§ 27.	Properties of locally compact spaces	166
§ 28.	Construction of Radon measures on locally compact spaces	170
§ 29.	Riesz representation theorem	177

xvi Table of Contents

§ 30. Convergence of Radon measures	188
§ 31. Vague compactness and metrizability questions	204
Bibliography	217
Symbol Index	221
Name Index	223
Subject Index	225
-	

5