AN INTRODUCTION TO FLUID DYNAMICS

BY

G.K.BATCHELOR, F.R.S.

Professor of Applied Mathematics in the University of Cambridge

CONTENTS

Pref	face page	xiii
Con	ventions and Notation	xviii
	Chapter 1. The Physical Properties of Fluids	
1.1	Solids, liquids and gases	I
1.2	The continuum hypothesis	4
1.3	Volume forces and surface forces acting on a fluid Representation of surface forces by the stress tensor, 9 The stress tensor in a fluid at rest, 12	7
1.4	Mechanical equilibrium of a fluid A body 'floating' in fluid at rest, 16 Fluid at rest under gravity, 18	14
1.5	Classical thermodynamics	20
1.6	Transport phenomena	28
	The linear relation between flux and the gradient of a scalar intensity, 30 The equations for diffusion and heat conduction in isotropic media at rest, 32 Molecular transport of momentum in a fluid, 36	Ŀ
1.7	The distinctive properties of gases	37
	A perfect gas in equilibrium, 38 Departures from the perfect-gas laws, 45 Transport coefficients in a perfect gas, 47 Other manifestations of departure from equilibrium of a perfect gas, 50	
1.8	The distinctive properties of liquids	53
	Equilibrium properties, 55 Transport coefficients, 57	
1.9	Conditions at a boundary between two media	60
	Surface tension, 60 Equilibrium shape of a boundary between two stationary fluids, 63 Transition relations at a material boundary, 68	
	Chapter 2. Kinematics of the Flow Field	
2.I	Specification of the flow field Differentiation following the motion of the fluid, 72	71
2.2	Conservation of mass Use of a stream function to satisfy the mass-conservation equation, 75	73
2.3	Analysis of the relative motion near a point Simple shearing motion, 83	79

vi	Contents	
2.4	Expression for the velocity distribution with specified rate pa of expansion and vorticity	<i>ge</i> 84
2.5	Singularities in the rate of expansion. Sources and sinks	88
2.6	The vorticity distribution	92
	Line vortices, 93 Sheet vortices, 96	
2.7	Velocity distributions with zero rate of expansion and zero vorticity	99
	Conditions for $\nabla \phi$ to be determined uniquely, 102 Irrotational solenoidal flow near a stagnation point, 105 The complex potential for irrotational solenoidal flow in two dimensions, 10	6
2.8	Irrotational solenoidal flow in doubly-connected regions of space Conditions for $\nabla \phi$ to be determined uniquely, 112	108
2.9	Three-dimensional flow fields extending to infinity	114
	Asymptotic expressions for \mathbf{u}_{e} and \mathbf{u}_{v} , 114 The behaviour of ϕ at large distances, 117 Conditions for $\nabla \phi$ to be determined uniquely, 119 The expression of ϕ as a power series, 120 Irrotational solenoidal flow due to a rigid body in translational motion, 122	
2.10	Two-dimensional flow fields extending to infinity	124
	Irrotational solenoidal flow due to a rigid body in translational motion, 128	•
	Chapter 3. Equations Governing the Motion of a Fluid	
3.1	Material integrals in a moving fluid	131
	Rates of change of material integrals, 133 Conservation laws for a fluid in motion, 135	·
3.2	The equation of motion	137
	Use of the momentum equation in integral form, 138 Equation of motion relative to moving axes, 139	
3.3	The expression for the stress tensor	141
	Mechanical definition of pressure in a moving fluid, 141 The relation between deviatoric stress and rate-of-strain for a Newtonian fluid, 14 The Navier–Stokes equation, 147 Conditions on the velocity and stress at a material boundary, 148	2
3•4	Changes in the internal energy of a fluid in motion	151
3 ·5	Bernoulli's theorem for steady flow of a frictionless non- conducting fluid	156
	Special forms of Bernoulli's theorem, 161 Constancy of H across a transition region in one-dimensional steady flow, 163	
3.6	The complete set of equations governing fluid flow Isentropic flow, 165	164
2.7	Concluding remarks to chapters t, 2 and 2	171
J*/	Pression to complete 1, 2 and 3	-/-

Contents

	Chapter 4. Flow of a Uniform Incompressible Viscous Flui	d
4.1	Introduction pag Modification of the pressure to allow for the effect of the body force, 176	e 174
4.2	Steady unidirectional flow	179
·	Poiseuille flow, 180 Tubes of non-circular cross-section, 182 Two-dimensional flow, 182 A model of a paint-brush, 183 A remark on stability, 185	•••
4·3	Unsteady unidirectional flow	186
	The smoothing-out of a discontinuity in velocity at a plane, 187 Plane boundary moved suddenly in a fluid at rest, 189 One rigid boundary moved suddenly and one held stationary, 190 Flow due to an oscillating plane boundary, 191 Starting flow in a pipe, 193	
4 •4	The Ekman layer at a boundary in a rotating fluid The layer at a free surface, 197 The layer at a rigid plane boundary, 199	195
4.5	Flow with circular streamlines	201
4.6	The steady jet from a point source of momentum	205
4.7	Dynamical similarity and the Reynolds number	211
	Other dimensionless parameters having dynamical significance, 215	
4.8	Flow fields in which inertia forces are negligible Flow in slowly-varying channels, 217 Lubrication theory, 219 The Hele-Shaw cell, 222 Percolation through porous media, 223 Two-dimensional flow in a corner, 224 Uniqueness and minimum dissipation theorems, 227	216
4.9	Flow due to a moving body at small Reynolds number	229
	A rigid sphere, 230 A spherical drop of a different fluid, 235 A body of arbitrary shape, 238	
4.10	Oseen's improvement of the equation for flow due to moving bodies at small Reynolds number	240
	A rigid sphere, 241 A rigid circular cylinder, 244	
4.11	The viscosity of a dilute suspension of small particles	2 46
	The flow due to a sphere embedded in a pure straining motion, 248 The increased rate of dissipation in an incompressible suspension, 250 The effective expansion viscosity of a liquid containing gas bubbles, 253	
4.12	Changes in the flow due to moving bodies as R increases from I to about 100	255

vii

Contents

Chapter 5. Flow at Large Reynolds Number: Effects of Viscosity			
5.1	Introduction page	e 264	
5.2	Vorticity dynamics The intensification of vorticity by extension of vortex-lines, 270	266	
5.3	Kelvin's circulation theorem and vorticity laws for an inviscid fluid	273	
	The persistence of irrotationality, 276		
5.4	The source of vorticity in motions generated from rest	277	
5-5	 Steady flows in which vorticity generated at a solid surface is prevented by convection from diffusing far away from it (a) Flow along plane and circular walls with suction through the wall, 282 (b) Flow toward a 'stagnation point' at a rigid boundary, 285 (c) Centrifugal flow due to a rotating disk, 290 	282	
5.6	Steady two-dimensional flow in a converging or diverging channel	2 94	
	Purely convergent flow, 297 Purely divergent flow, 298 Solutions showing both outflow and inflow, 301		
5.7	Boundary layers	302	
5.8	The boundary layer on a flat plate	308	
5.9	The effects of acceleration and deceleration of the external stream	314	
	The similarity solution for an external stream velocity proportional to x^m , 316 Calculation of the steady boundary layer on a body moving through fluid, 318 Growth of the boundary layer in initially irrotational flow, 321		
5.10	Separation of the boundary layer	325	
5.11	The flow due to bodies moving steadily through fluid	331	
	Flow without separation, 332 Flow with separation, 337		
5.12	Jets, free shear layers and wakes	343	
	Narrow jets, 343 Free shear layers, 346 Wakes, 348		
5.13	Oscillatory boundary layers	353	
	The damping force on an oscillating body, 355 Steady streaming due to an oscillatory boundary layer, 358 Applications of the theory of steady streaming, 361		

	Contents	ix
5.14	Flow systems with a free surface	<i>page</i> 364
	The boundary layer at a free surface, 364 The drag on a spherical gas bubble rising steadily through liquid, 367 The attenuation of gravity waves, 370	
5.15	Examples of use of the momentum theorem	372
	The force on a regular array of bodies in a stream, 372 The effect of a sudden enlargement of a pipe, 373	
	Chapter 6. Irrotational Flow Theory and its Application	ons
6.1	The role of the theory of flow of an inviscid fluid	378
6.2	General properties of irrotational flow	380
	Integration of the equation of motion, 382 Expressions for the kinetic energy in terms of surface integrals, 383 Kelvin's minimum energy theorem, 384 Positions of a maximum of q and a minimum of p , 384 Local variation of the velocity magnitude, 386	
6.3	Steady flow: some applications of Bernoulli's theorem and a momentum theorem	the 386
	Efflux from a circular orifice in an open vessel, 387 Flow over a weir, 391 Jet of liquid impinging on a plane wall, 392 Irrotational flow which may be made steady by choice of rotating axes,	396
6.4	General features of irrotational flow due to a moving rigid bo	ody 398
	The velocity at large distances from the body, 399 The kinetic energy of the fluid, 402 The force on a body in translational motion, 404 The acceleration reaction, 407 The force on a body in accelerating fluid, 409	
6.5	Use of the complex potential for irrotational flow in two dimensions	40 9
	Flow fields obtained by special choice of the function $w(s)$, 410 Conformal transformation of the plane of flow, 413 Transformation of a boundary into an infinite straight line, 418 Transformation of a closed boundary into a circle, 420 The circle theorem, 422	
6.6	Two-dimensional irrotational flow due to a moving cylinder with circulation	42 3
	A circular cylinder, 424 An elliptic cylinder in translational motion, 427 The force and moment on a cylinder in steady translational motion, 433	ł
6.7	Two-dimensional aerofoils	435
	The practical requirements of aerofoils, 435 The generation of circulation round an aerofoil and the basis for Joukowski's hypothesis, 438 Aerofoils obtained by transformation of a circle, 441 Joukowski aerofoils, 444	

х	Contents	
6.8	Axisymmetric irrotational flow due to moving bodies page	² 449
	Generalities, 449 A moving sphere, 452 Ellipsoids of revolution, 455 Body shapes obtained from source singularities on the axis of symmetry, 458 Semi-infinite bodies, 460	
6.9	Approximate results for slender bodies	463
	Slender bodies of revolution, 463 Slender bodies in two dimensions, 466 Thin aerofoils in two dimensions, 467	
6.10	Impulsive motion of a fluid	47 I
	Impact of a body on a free surface of liquid, 473	
6.11	Large gas bubbles in liquid	474
	A spherical-cap bubble rising through liquid under gravity, 475 A bubble rising in a vertical tube, 477 A spherical expanding bubble, 479	
6.12	Cavitation in a liquid	481
	Examples of cavity formation in steady flow, 482 Examples of cavity formation in unsteady flow, 485 Collapse of a transient cavity, 486 Steady-state cavities, 491	
6.13	Free-streamline theory, and steady jets and cavities	49 3
	Jet emerging from an orifice in two dimensions, 495 Two-dimensional flow past a flat plate with a cavity at ambient pressure, 497 Steady-state cavities attached to bodies held in a stream of liquid, 502	
	Chapter 7. Flow of Effectively Inviscid Fluid with Vorticity	,
7.1	Introduction	507
	The self-induced movement of a line vortex, 509 The instability of a sheet vortex, 511	
7.2	Flow in unbounded fluid at rest at infinity	517
	The resultant force impulse required to generate the motion, 518 The total kinetic energy of the fluid, 520 Flow with circular vortex-lines, 521 Vortex rings, 522	
7.3	Two-dimensional flow in unbounded fluid at rest at infinity	527
	Integral invariants of the vorticity distribution, 528 Motion of a group of point vortices, 530 Steady motions, 532	
7.4	Steady two-dimensional flow with vorticity throughout the fluid	536
-	Uniform vorticity in a region bounded externally, 538 Fluid in rigid rotation at infinity, 539 Fluid in simple shearing motion at infinity, 541	

	Contents		xi
7.5	Steady axisymmetric flow with swirl	page	543
	The effect of a change of cross-section of a tube on a stream of rotatin fluid, 546 The effect of a change of external velocity on an isolated vortex, 550	g	
7.6	Flow systems rotating as a whole		555
	The restoring effect of Coriolis forces, 555 Steady flow at small Rossby number, 557 Propagation of waves in a rotating fluid, 559 Flow due to a body moving along the axis of rotation, 564		
7.7	Motion in a thin layer on a rotating sphere		567
	Geostrophic flow, 571 Flow over uneven ground, 573 Planetary waves, 577		
7.8	The vortex system of a wing		580
	General features of the flow past lifting bodies in three dimensions, 58 Wings of large aspect ratio, and 'lifting-line' theory, 583 The trailing vortex system far downstream, 589 Highly swept wings, 591	0	-

Appendices

Measured values of some physical properties of common fluids 594 I

- (a) Dry air at a pressure of one atmosphere, 594
- (b) The Standard Atmosphere, 595
- (c) Pure water, 595
 (d) Diffusivities for momentum and heat at 15 °C and 1 atm, 597
- (e) Surface tension between two fluids, 597
- Expressions for some common vector differential quantities in 598 2 orthogonal curvilinear co-ordinate systems

Publications referred to in the text

Subject Index

609

604

Plates 1 to 24 are between pages 364 and 365