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Preface 

A historical perspective 

The subject matter of this book had its genesis in Riemann's 1854 "habil­
itation" address: "Uber die Hypothesen, welche der Geometrie zu Grunde 
liegen" (On the Hypotheses, which lie at the Foundations of Geometry). 
Volume II of Spivak's Differential Geometry contains an English translation 
of this infiuentiallecture, with a commentary by Spivak himself. 

Riemann, undoubtedly the greatest mathematician of the 19th century, 
aimed at introducing the notion of a manifold and its structures. The prob­
lem involved great difficulties. But, with hypotheses on the smoothness of 
the functions in question, the issues can be settled satisfactorily and there 
is now a complete treatment. 

Traditionally, the structure being focused on is the Riemannian metric, 
which is a quadratic differential form. Put another way, it is a smoothly 
varying family of inner products, one on each tangent space. The resulting 
geometry - Riemannian geometry - has undergone tremendous develop­
ment in this century. Areas in which it has had significant impact include 
Einstein's theory of general relativity, and global differential geometry. 

In the context of Riemann's lecture, this restriction to a quadratic dif­
ferential form constitutes only a special case. Nevertheless, Riemann saw 
the great merit of this special case, so much so that he introduced for it 
the curvature tensor and the notion of sectional curvature. Such was done 
through a Taylor expansion of the Riemannian metric. 

The Riemann curvature tensor plays a major role in a fundamental prob­
lem. Namely: how does one decide, in principle, whether two given Rie­
mannian structures differ only by a coordinate transformation? This was 
solved in 1870, independently by Christoffel and Lipschitz, using different 
methods and without the benefit of tensor calculus. It was almost 50 years 
later, in 1917, that Levi-Civita introduced his notion of parallelism (equiv­
alent to a connection), thereby giving the solution a simple geometrical 
interpretation. 

Riemann saw the difference between the quadratic case and the general 
case. However, the latter had no choice but to lay dormant when he re­
marked that "The study of the metric which is the fourth root of a quartic 
differential form is quite time-consuming and does not throw new light to 
the problem." Happily, interest in the general case was revived in 1918 
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by Paul Finsler's thesis, written under the direction of CaratModory. For 
this reason, we refer to the general case as Riemann-Finsler geometry, or 
Finsler geometry for short. 

Finsler geometry is closely related to the calculus of variations. See §1.0. 
As such its deeper study went back at least to Jacobi and Adolf Kneser. In 
his Paris address in 1900, Hilbert formulated 23 unsolved problems. The 
last one was devoted to the geometry of the calculus of variations. It is the 
only problem for which he did not formulate a specific question/conjecture. 
Hilbert gave praise to Kneser's book, then new. He provided an account of 
the invariant integral, and emphasized the importance of the problem of 
multiple integrals. The Hilbert invariant integral plays an important role 
in all modern treatments of the subject. 

The geometrical data in Finsler geometry consists of a smoothly vary­
ing family of Minkowski norms (one on each tangent· space), rather than 
a family of inner products. This family of Minkowski norms is known as a 
Finsler structure. Just like Riemannian geometry, there is the equivalence 
problem: how can one decide (in principle) whether two given Finsler struc­
tures differ only by a transformation induced from a coordinate change? It 
is not unreasonable to expect that the solution of the equivalence problem 
will again involve a connection and its curvature, together with the proper 
space on which these objects live. 

In Riemannian geometry, the connection of choice was that constructed 
by Levi-Civita, using the Christoffel symbols. It has two remarkable at­
tributes: metric-compatibility and torsion-freeness. Although we now know 
that in Finsler geometry proper, these cannot both be present in the same 
connection, such was perhaps not common knowledge during the turn of 
the century. Even after reaching this realization, one still faces the daunting 
task of writing down viable structural equations for the connection. Fur­
thermore, the Levi-Civita (Christoffel) connection operates on the tangent 
bundle T M of our underlying manifold M. But the same cannot be said of 
its Finslerian counterpart. 

It was not until 1926 that significant progress was made by Ludwig 
Berwald (1883-1942), from an analytical perspective. See the poignant and 
informative obituary by Max Pinl in Scripta Math. 27 (1965), 193-203. 

Berwald's work stemmed from the study of systems of differential equa­
tions, and was very much rooted in the calculus of variations. He introduced 
a connection and two curvature tensors, all rightfully bearing his name. See 
Matsumoto's appendix ("A History of Finsler Geometry") in Proceedings 
of the 33rd Symposium on Finsler Geometry (ed. Okubo), 1998, Lake Ya­
manaka. (A revised version is scheduled to appear in Tensor.) The Berwald 
connection is torsion-free, but is (necessarily) not metric-compatible. The 
Berwald curvature tensors are of two types: an hh- one not unlike the Rie­
mann curvature tensor, and an hv- one which automatically vanishes in 
the Riemannian setting. Berwald's constructions have, since their incep­
tion, been indispensable to the geometry of path spaces. 
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Enthusiasts of metric-compatibility were not to be outdone. It is an amus­
ing irony that although Finsler geometry starts with only a norm in any 
given tangent space, it regains an entire family (!) of inner products, one for 
each direction in that tangent space. This is why one can still make sense 
of metric-compatibility in the Finsler setting. In 1934, Elie Cartan intro­
duced a connection that is metric-compatible but has torsion. The Cartan 
connection remains, to this day, immensely popular with the Matsumoto 
and the Miron schools of Finsler geometry. Besides the curvature tensors 
of hh- and hv- type, there is a third curvature tensor associated with the 
Cartan connection. It is of vv- type. Curiously, this last tensor is numeri­
cally identical to the curvature of a canonical (albeit singular) Riemannian 
metric on each tangent space. 

Back in the torsion-free camp, the next progress came in 1948, when the 
Chern connection was discovered. Its formula differs from that of Berwald's 
by an A term. In natural coordinates on the slit tangent bundle T M " 0, 
the Chern connection coefficients are given by 

To get those for the Berwald connection, one simply adds on the tensor 
Aijk • More importantly, replacing the operator {j~ by tx gives the familiar 
Levi-Civita (Christoffel) connection of Riemannian metrics. 

The connections of Berwald and Chern are both torsion-free. They also 
fail, slightly but expectedly, to be metric-compatible. Of the two, the Chern 
connection is simpler in form, while the Berwald connection effects a leaner 
hh-curvature for spaces of constant flag curvature. These connections co­
incide when the underlying Finsler structure is of Landsberg type. They 
further reduce to a linear connection on M, one which operates on T M, 
when the Finsler structure is of Berwald type. 

In the generic Finslerian case, none of the connections we mentioned 
operates directly on the tangent bundle T Mover M. Chern realized in his 
solution of the equivalence problem that, by pulling back T M so that it 
sits over the manifold of rays 8M rather than M, one provides a natural 
vector bundle on which these connections may operate. It is within this 
geometrized setting that the equivalence problem and its solution admit a 
sound conceptual interpretation. 

The layout of the book 

The Riemann-Finsler manifolds form a much larger class than the Rie­
mannian manifolds. Correspondingly, the former has a much more extensive 
literature, connected with the names Synge, Berwald, E. Cartan, Buse­
mann, Rund, and many of our contemporaries. It is not the objective of 
this book to provide a comprehensive survey. Rather, following the general 
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outline of Riemann and Hilbert, our aim is to develop the subject some­
what independently, with Riemannian geometry as a special case. We hope 
our attempt at least reflects some of the spirits of those two pioneers. 

This book is comprised of three parts: 

* Finsler Manifolds and Their Curvature: four chapters. 
* Calculus of Variations and Comparison Theorems: five chapters. 
* Special Finsler Spaces over the Reals: five chapters. 

The key points of each chapter are detailed in our table of contents. Given 
that, we refrain from discussing here the specific topics covered. 

There are fourteen chapters with an average of 30 pages each. The 
chapters are intentionally kept short. It seems that psychologically, one's 
progress through the Finsler landscape is more easily monitored this way. 
Every chapter is devoted to (only) one or two major results. This con­
straint allows us to base each chapter on a single theme, thereby rendering 
the book more teachable. 

Regarding classroom use, the students we have in mind are advanced 
undergraduates or first-year graduate students. They are assumed to have 
had at least a small amount of tensor analysis, to the extent that they 
are comfortable with the gymnastics of raising and lowering indices. It 
would also help if they have had some exposure to manifolds in the ab­
stract, so that pull-backs and push-forwards are familiar operations. Some 
computational experience with the Gaussian curvature of Riemannian sur­
faces would provide adequate motivation and intuition. This book contains 
enough material for roughly three semester courses. 

We have adopted a candid style of writing. If something is deemed simple 
or straightforward, then it really is. If an omitted calculation is long, we say 
so. Details, annotations, and remarks are provided for the harder or subtler 
topics. Perhaps these gestures will help encourage the newly initiated to 
stay the course and not give up too easily. 

At the end of every chapter, one finds a list of references. Other than 
a few books, these consist primarily of research papers mentioned in that 
chapter. We have chosen to list them there for a reason. It is helpful to be 
able to tell, at a glance, the research territories and boundaries with which 
the chapter in question has made contact. We hope this feature helps foster 
the book's image as an invitation to ongoing research. Incidentally, a master 
bibliography also appears at the end of the book. 

We have compiled 393 exercises. Among those, there are 80 that prompt 
the reader to fill in some of the steps that we have omitted. Nothing was left 
out due to laziness on our part. Instead, the omissions are to be thought of 
as casualties of the editorial process. Their inclusion would either prove to 
be too distracting, or add unnecessarily to the size of the book. Those 80 
problems aside, the remaining 313 exercises explore examples, touch upon 
new frontiers, and prepare for developments in later chapters. 
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If the purpose of the reader is to gain a nodding acquaintance of Finsler 
geometry, then the exercises can be skipped without harm, until some spe­
cific ones are referred to later. If the reader plans to do research in Finsler 
geometry, then practically all the exercises need to be carefully worked 
out. And, to assist those in the second group, we have provided detailed 
step-by-step guidance on the more challenging problems. The adventurous 
reader can always restore as much challenge as he or she wants by blocking 
out some of our suggestions. We simply want to ensure that no one feels 
demoralized by any of the exercises. 

A good number of explicit examples are presented in this book. Those 
discussed in the sections proper include: 

* Minkowski spaces: §I.3A, §14.I. 
* Riemannian spaces: §13.3, especially §13.3B, §13.3C. 
* Berwald spaces: §1O.3, §II.6B. 
* Randers spaces: §I.3C, §II.O, §II.6B, §12.6. 
* Spaces of scalar curvature: §3.9B. 
* Spaces of constant flag curvature: §12.6, §12.7. 

Many more can be found among the exercises. 
The above examples all involve y-global Finsler structures F, with the 

exception of the Berwald-Rund example treated in §10.3. By y-global, we 
mean that F is smooth and strongly convex on T M ,,0. The said example 
does not meet this stringent criterion, but is nevertheless included because 
it illustrates some computation well. It also provides excellent motivation 
for the rest of Chapter 10 and all of Chapter II. 

By no means have we exhausted the realm of interesting examples, y­
global or not. For instance, it is with great reluctance that we have omitted 
Antonelli's Ecological Models, Matsumoto's Slope of a Mountain Metric, 
and Models of Physiological Optics discussed by Ingarden. The interested 
reader can consult the book The Theory of Sprays and Finsler Spaces with 
Applications in Physics and Biology written by these three authors. 

It is true that Finsler geometry has not been nearly as popular as its 
progeny-Riemannian geometry. One reason is that deceptively simple for­
mulas can quickly give rise to complicated expressions and mind-boggling 
computations. With the effort of many dedicated practitioners, this situa­
tion is slowly being turned around. Nonetheless, some intrinsic aspects of 
the subject are suggesting bounds on what one can do with mere pencil 
and paper. 

Fortunately, we are in a technological age. Symbolic computations and 
large-scale computations on the computer are readily accessible. We took 
the first step in that direction by writing Maple codes for the Finslerian 
analogue of the Gaussian curvature. Then we implemented those codes 
on some explicit examples in Chapter 12. We hope this modest attempt 
represents the start of a trend. This could also be the venue by which a 
geometry-minded computer scientist helps advance the field significantly. 
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As we mentioned earlier, this book is not intended to be a comprehensive 
survey. Furthermore, our choice of topics and examples is guided by an eye 
towards the global geometry. The picture we paint can possibly be rather 
idiosyncratic. In spite of that, the material covered here is fundamental 
enough to be considered essential to all branches of Finsler geometry. 

To our colleagues 

In earlier versions of the manuscript, our definitions of the nonlinear 
connection and related objects on T M " 0 differed from those of our fellow 
researchers by factors involving the Finsler function F. In this final ver­
sion, we have decided to match their notations exactly. It is hoped that by 
removing an unnecessary accent, we have enhanced the book's suitability 
as a textbook or as a basic desk reference. Here are the specifics: 

N i "'/jk yk 
Ai Ok 

'Yijk yk Ci k r s .- j. "/rs yr yS -
J jk 'Y rs Y Y , 

8 8 
N i 

8 8yi dyi Nio dxj 
8xj -

8xj J 8yi 
, .- + J 

We have not changed our philosophy of working, as much as possible, with 
objects that are homogeneous of degree zero in y. Our reason for doing so 
is that they make intrinsic sense on the manifold of rays SM. For instance, 
we prefer to work with N i j / F rather than just N ij . But, unlike our earlier 
notation, the N'j here is identical to the N'j used by others. 

Next, our convention on the wedge product does not contain the normal­
ization factors :h, ~, etc. For example, if (), (, and € are I-forms, then: 

() 1\ (.- () ® (, - (® () , 

() 1\ ( 1\ €.- () ® ( ® € () ® € ® (, 

Our placement of indices and sign convention on the curvature tensor 
are adequately illustrated by what we do in the Riemannian case: 

i gis (8gsj _ 8gjk + 8gks ) 
'Y jk'- 2 8xk 8xs 8xj , 

8'Yijk i h i h 
8xl + 'Y hk 'Y jl - 'Y hl'Y jk 

Finally, our Gi := 'Yijk yjyk is twice the Gi of Matsumoto. 

Houston, Texas 
Berkeley, California 
Indianapolis, Indiana 

D. Bao 
S.-S. Chern 

Z. Shen 
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