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Preface

Harmonie functions-the solutions of Laplace's equation-play a
crucial role in many areas of mathematies, physies, and engineer
ing. But learning about them is not always easy. At times each of
the authors has agreed with Lord Kelvin and Peter Tait, who wrote
([12], Preface)

There can be but one opinion as to the beauty and utility of
this analysis of Laplace; but the manner in which it has been
hitherto presented has seemed repulsive to the ablest mathe
maticians, and difficult to ordinary mathematicalstudents.

The quotation has been included mostly for the sake of amusement,
but it does convey a sense of the difficulties the uninitiated sometimes
encounter.

The main purpose of our text, then, is to make learning about
harmonie functions easier. The only prerequisite for the book is a
solid foundation in real and complex analysis, together with some
basic results from functional analysis . The first fifteen chapters of
Rudin's Real and Complex Analysis, for example, provide sufficient
preparation.

In several cases we simplify standard proofs. For example, we
replace the usual tedious calculations showing that the Kelvin trans
form of a harmonie function is harmonie with some straightforward
observations that we believe are more revealing. Another example is
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our proof of Böcher's Theorem, whieh is more elementary than the
classical proofs.

We also present material not usually covered in standard treat
ments of harmonie functions . The section on the Schwarz Lemma and
the chapter on Bergman spaces are examples. For completeness, we
include some topies in analysis that frequently slip through the cracks
in a beginning graduate student's currieulum, such as real-analytie
functions.

We rarely attempt to trace the history of the ideas presented in
this book. Thus the absence of a reference does not imply originality
on our part.

In addition to writing the text, the authors have developed a
software package to manipulate many of the expressions that arise
in harmonie function theory. Our software package, whieh uses many
results from this book, can perform symbolic calculations that would
take a prohibitive amount of time if done without a computer. For
example, the Poisson integral of any polynomial can be computed
exactly. Appendix B explains how readers can obtain our software
package free of charge .

This book has its roots in a graduate course at Miehigan State
University taught by one of the authors and attended by the other
authors along with a number of graduate students. The topic of har
monie functions was presented with the intention of moving on to
different material after introducing the basie concepts. We did not
move on to different material. Instead, we began to ask natural ques
tions about harmonie functions. Lively and illuminating discussions
ensued. A freewheeling approach to the course developed; answers to
questions someone had raised in dass or in the hallway were worked
out and then presented in dass (or in the hallway) . Discovering math
ematies in this way was a thoroughly enjoyable experience . We will
consider this book a success if some of that enjoyment shines through
in these pages.
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