Graduate Texts in Mathematics 137

Editorial Board J.H. Ewing F.W. Gehring P.R. Halmos

Graduate Texts in Mathematics

- 1 TAKEUTI/ZARING. Introduction to Axiomatic Set Theory. 2nd ed.
- 2 OXTOBY. Measure and Category. 2nd ed.
- 3 SCHAEFFER. Topological Vector Spaces.
- 4 HILTON/STAMMBACH. A Course in Homological Algebra.
- 5 MAC LANE. Categories for the Working Mathematician.
- 6 HUGHES/PIPER. Projective Planes.
- 7 SERRE. A Course in Arithmetic.
- 8 TAKEUTI/ZARING. Axiometic Set Theory.
- 9 HUMPHREYS. Introduction to Lie Algebras and Representation Theory.
- 10 COHEN. A Course in Simple Homotopy Theory.
- 11 CONWAY. Functions of One Complex Variable. 2nd ed.
- 12 BEALS. Advanced Mathematical Analysis.
- 13 ANDERSON/FULLER. Rings and Categories of Modules. 2nd ed.
- 14 GOLUBITSKY/GUILEMIN. Stable Mappings and Their Singularities.
- 15 BERBERIAN. Lectures in Functional Analysis and Operator Theory.
- 16 WINTER. The Structure of Fields.
- 17 ROSENBLATT. Random Processes. 2nd ed.
- 18 HALMOS. Measure Theory.
- 19 HALMOS. A Hilbert Space Problem Book. 2nd ed., revised.
- 20 HUSEMOLLER. Fibre Bundles. 2nd ed.
- 21 HUMPHREYS. Linear Algebraic Groups.
- 22 BARNES/MACK. An Algebraic Introduction to Mathematical Logic.
- 23 GREUB. Linear Algebra. 4th ed.
- 24 HOLMES. Geometric Functional Analysis and Its Applications.
- 25 HEWITT/STROMBERG. Real and Abstract Analysis.
- 26 MANES. Algebraic Theories.
- 27 KELLEY. General Topology.
- 28 ZARISKI/SAMUEL. Commutative Algebra. Vol. I.
- 29 ZARISKI/SAMUEL. Commutative Algebra. Vol. II.
- 30 JACOBSON. Lectures in Abstract Algebra I. Basic Concepts.
- 31 JACOBSON. Lectures in Abstract Algebra II. Linear Algebra.
- 32 JACOBSON. Lectures in Abstract Algebra III. Theory of Fields and Galois Theory.
- 33 HIRSCH. Differential Topology.
- 34 SPITZER. Principles of Random Walk. 2nd ed.
- 35 WERMER. Banach Algebras and Several Complex Variables. 2nd ed.
- 36 KELLEY/NAMIOKA et al. Linear Topological Spaces.
- 37 MONK. Mathematical Logic.
- 38 GRAUERT/FRITZSCHE. Several Complex Variables.
- 39 ARVESON. An Invitation to C* -Algebras.
- 40 KEMENY/SNELL/KNAPP. Denumerable Markov Chains. 2nd ed.
- 41 APOSTOL. Modular Functions and Dirichlet Series in Number Theory. 2nd ed.
- 42 SERRE. Linear Representations of Finite Groups.
- 43 GILLMAN/JERISON. Rings of Continuous Functions.
- 44 KENDIG. Elementary Algebraic Geometry.
- 45 LOÈVE. Probability Theory I. 4th ed.
- 46 LOÈVE. Probability Theory II. 4th ed.
- 47 MOISE. Geometric Topology in Dimentions 2 and 3.

Sheldon Axler Paul Bourdon Wade Ramey

Harmonic Function Theory

With 16 Illustrations

Springer Science+Business Media, LLC

Sheldon Ayler	Paul Bourdon	Wade Ramey		
Department of	Department of	Department of		
Mathematics	Mathematics	Mathematics		
Michigan State University	Washington and	Michigan State University		
East Lansing, MI 48824	Lee University	East Lansing, MI 48824		
USA	Lexington, VA 24450 USA	USA		
Editorial Board				
J.H. Ewing	F.W. Gehring	P.R. Halmos		
Department of	Department of	Department of		
Mathematics	Mathematics	Mathematics		
Indiana University	University of Michigan	Santa Clara University		
Bloomington, IN 47405	Ann Arbor, MI 48109	Santa Clara, CA 95053		
USA	USA	USA		

Mathematics Subject Classifications (1991): 31B05, 31-01, 31J05

Library of Congress Cataloging-in-Publication Data
Axler, Sheldon.
Harmonic function theory / Sheldon Axler, Paul Bourdon, Wade
Ramey.
p. cm. - (Graduate texts in mathematics ; 137)
Includes bibliographical references (p.) and indexes.
1. Harmonic functions. I. Bourdon, Paul. II. Ramey, Wade.
III. Title. IV. Series.
OA405.A95 1992

Printed on acid-free paper.

515'.53 - dc20

© 1992 Springer Science+Business Media New York Softcover reprint of the hardcover 1st edition 1992 Originally published by Springer-Verlag New York, Inc. in 1992.

All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer-Verlag New York, Inc., 175 Fifth Avenue, New York, NY 10010, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.

92-16950

The use of general descriptive names, trade names, trademarks, etc., in this publication, even if the former are not especially identified, is not to be taken as a sign that such names, as understood by the Trade Marks and Merchandise Marks Act, may accordingly be used freely by anyone.

Production managed by Henry Krell; manufacturing supervised by Vincent Scelta. Photocomposed copy prepared using LaTeX.

987654321

ISBN 978-1-4899-1186-5 ISBN 978-0-387-21527-3 (eBook) DOI 10.1007/978-0-387-21527-3

Preface

Harmonic functions—the solutions of Laplace's equation—play a crucial role in many areas of mathematics, physics, and engineering. But learning about them is not always easy. At times each of the authors has agreed with Lord Kelvin and Peter Tait, who wrote ([12], Preface)

There can be but one opinion as to the beauty and utility of this analysis of Laplace; but the manner in which it has been hitherto presented has seemed repulsive to the ablest mathematicians, and difficult to ordinary mathematical students.

The quotation has been included mostly for the sake of amusement, but it does convey a sense of the difficulties the uninitiated sometimes encounter.

The main purpose of our text, then, is to make learning about harmonic functions easier. The only prerequisite for the book is a solid foundation in real and complex analysis, together with some basic results from functional analysis. The first fifteen chapters of Rudin's *Real and Complex Analysis*, for example, provide sufficient preparation.

In several cases we simplify standard proofs. For example, we replace the usual tedious calculations showing that the Kelvin transform of a harmonic function is harmonic with some straightforward observations that we believe are more revealing. Another example is our proof of Bôcher's Theorem, which is more elementary than the classical proofs.

We also present material not usually covered in standard treatments of harmonic functions. The section on the Schwarz Lemma and the chapter on Bergman spaces are examples. For completeness, we include some topics in analysis that frequently slip through the cracks in a beginning graduate student's curriculum, such as real-analytic functions.

We rarely attempt to trace the history of the ideas presented in this book. Thus the absence of a reference does not imply originality on our part.

In addition to writing the text, the authors have developed a software package to manipulate many of the expressions that arise in harmonic function theory. Our software package, which uses many results from this book, can perform symbolic calculations that would take a prohibitive amount of time if done without a computer. For example, the Poisson integral of any polynomial can be computed exactly. Appendix B explains how readers can obtain our software package free of charge.

This book has its roots in a graduate course at Michigan State University taught by one of the authors and attended by the other authors along with a number of graduate students. The topic of harmonic functions was presented with the intention of moving on to different material after introducing the basic concepts. We did not move on to different material. Instead, we began to ask natural questions about harmonic functions. Lively and illuminating discussions ensued. A freewheeling approach to the course developed; answers to questions someone had raised in class or in the hallway were worked out and then presented in class (or in the hallway). Discovering mathematics in this way was a thoroughly enjoyable experience. We will consider this book a success if some of that enjoyment shines through in these pages.

Acknowledgments

Our book has been improved by our students. We take this opportunity to thank them for catching errors and making suggestions while attending courses at Michigan State University based on material in this book.

Among the many mathematicians who have influenced our outlook on harmonic function theory, we give special thanks to Dan Luecking for helping us to better understand Bergman spaces, and to Elias Stein and Guido Weiss for their book [10], which contributed greatly to our knowledge of spherical harmonics.

Lastly we thank the typists, who labored endlessly on this project. Although they produced some of the worst typing we have seen, the number of errors from one draft to the next did, on occasion, actually decrease. The typists were: Sheldon Axler, Paul Bourdon, and Wade Ramey.

Contents

Preface

Preface			v
Acknowledgments			vii
CHAPTER 1			
Basic Properties of Harmonic Functions			1
Definitions and Examples			1
Invariance Properties			2
The Mean-Value Property			4
The Maximum Principle			6
The Poisson Kernel for the Ball			9
The Dirichlet Problem for the Ball			12
Converse of the Mean-Value Property			16
Real Analyticity and Homogeneous Expansions			18
Origin of the Term "Harmonic"			24
Exercises	•	•••	26

CHAPTER 2	
Bounded Harmonic Functions	31
Liouville's Theorem	31
Isolated Singularities	32
Cauchy's Estimates	33
Normal Families	34
Maximum Principles	36
Limits Along Rays	38
Bounded Harmonic Functions on the Ball	40
Exercises	41
CHAPTER 3	
Positive Harmonic Functions	45
Liouville's Theorem	45
Harnack's Inequality and Harnack's Principle	47
Isolated Singularities	50
Positive Harmonic Functions on the Ball	54
Exercises	56
CHAPTER 4	
The Kelvin Transform	59
Inversion in the Unit Sphere	59
Motivation and Definition	61
The Kelvin Transform Preserves Harmonic Functions	62
Harmonicity at Infinity	63
The Exterior Dirichlet Problem	65
Symmetry and the Schwarz Reflection Principle	66
Exercises	70
CHAPTER 5	
Spherical Harmonics	73
$L^2(S) = \bigoplus_{m=0}^{\infty} \mathcal{H}_m(S) \dots \dots \dots \dots \dots \dots \dots \dots \dots $	74
Zonal Harmonics	78
The Poisson Kernel Revisited	82
An Explicit Formula for Zonal Harmonics	85
A Geometric Characterization of Zonal Harmonics	87
Spherical Harmonics Via Differentiation	89
Explicit Bases for $\mathcal{H}_m(\mathbf{R}^n)$ and $\mathcal{H}_m(S)$	92
Exercises	94

CHAPTER 6
Harmonic Hardy Spaces 97
Poisson Integrals of Measures
Weak* Convergence
The Spaces $h^p(B)$
The Schwarz Lemma
The Fatou Theorem
Exercises
CHAPTER 7
Harmonic Functions on Half-Spaces 125
The Poisson Kernel for the Upper Half-Space
The Dirichlet Problem for the Upper Half-Space 128
The Harmonic Hardy Spaces $h^p(H)$
From the Ball to the Upper Half-Space, and Back 134
Positive Harmonic Functions on the Upper Half-Space 136
Nontangential Limits
The Local Fatou Theorem
Exercises
CHAPTER 8
Harmonic Bergman Spaces 151
Reproducing Kernels
The Reproducing Kernel for the Ball $\ldots \ldots \ldots \ldots \ldots 154$
Examples in $b^p(B)$
The Upper Half-Space
Exercises
CHAPTER 9
The Decomposition Theorem 169
The Fundamental Solution of the Laplacian
Decomposition of Harmonic Functions
Bocher's Theorem Revisited
Removable Sets for Bounded Harmonic Functions 176
The Logarithmic Conjugation Theorem
Exercises

CHAPTER 10	
Annular Regions	183
Laurent Series	183
Isolated Singularities	185
The Residue Theorem	187
The Poisson Kernel for Annular Regions	189
Exercises	193
CHAPTER 11	
The Dirichlet Problem and Boundary Behavior	197
The Dirichlet Problem	197
Subharmonic Functions	. 198
The Perron Construction	. 200
Barrier Functions and Geometric Criteria for Solvability	. 201
Non-extendability Results	. 206
Exercises	. 210
APPENDIX A	
Volume, Surface Area, and Integration on Spheres	213
Volume of the Ball and Surface Area of the Sphere	. 213
Slice Integration on Spheres	. 215
Slice Integration: Special Cases	. 216
Exercises	. 218
APPENDIX B	
Mathematica and Harmonic Function Theory	221
References	223
Symbol Index	225
Index	229