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Preface 

This volume is intended to allow mathematicians and physicists, especially 
analysts, to learn about nonlinear problems which arise in Riemannian 
Geometry. 

Analysis on Riemannian manifolds is a field currently undergoing great 
development. More and more, analysis proves to be a very powerful means 
for solving geometrical problems. Conversely, geometry may help us to solve 
certain problems in analysis. 

There are several reasons why the topic is difficult and interesting. It is 
very large and almost unexplored. On the other hand, geometric problems 
often lead to limiting cases of known problems in analysis, sometimes there 
is even more than one approach, and the already existing theoretical studies 
are inadequate to solve them. Each problem has its own particular difficulties. 

Nevertheless there exist some standard methods which are useful and which 
we must know to apply them. One should not forget that our problems are 
motivated by geometry, and that a geometrical argument may simplify the 
problem under investigation. Examples of this kind are still too rare. 

This work is neither a systematic study of a mathematical field nor the 
presentation of a lot of theoretical knowledge. On the contrary, I do my best 
to limit the text to the essential knowledge. I define as few concepts as possible 
and give only basic theorems which are useful for our topic. But I hope that 
the reader will find this sufficient to solve other geometrical problems by 
analysis. 

The book is intended to be used as a reference and as an introduction to 
research. It can be divided into two parts, with each part containing four 
chapters. Part I is concerned with essential background knowledge. Part II 
develops methods which are applied in a concrete way to resolve specific 
problems. 

Chapter 1 is devoted to Riemannian geometry. The specialists in analysis 
who do not know differential geometry will find, in the beginning of the 
chapter, the definitions and the results which are indispensable. Since it is 
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useful to know how to compute both globally and in local coordinate charts, 
the proofs which we will present will be a good initiation. In particular, it is 
important to know Theorem 1.53, estimates on the components of the metric 
tensor in polar geodesic coordinates in terms of the curvature. 

Chapter 2 studies Sobolev spaces on Riemannian manifolds. Successively, 
we will treat density problems, the Sobolev imbedding theorem, the Kondra
kov theorem, and the study of the limiting case of the Sobolev imbedding 
theorem. These theorems will be used constantly. Considering the importance 
of Sobolev's theorem and also the interest of the proofs, three proofs of the 
theorem are given, the original proof of Sobolev, that of Gagliardo and 
Nirenberg, and my own proof, which enables us to know the value ofthe norm 
of the imbedding, an introduction to the notion of best constants in Sobolev's 
inequalities. This new concept is crucial for solving limiting cases. 

In Chapter 3 we will find, usually without proof, a substantial amount of 
analysis. The reader is assumed to know this background material. It is stated 
here as a reference and summary of the versions of results we will be using. 
There are as few results as possible. I choose only the most useful and appli
cable ones so that the reader does not drown in a host of results and lose the 
main point. For instance, it is possible to write a whole book on the regularity 
of weak solution for elliptic equations without discussing the existence of 
solutions. Here there are six theorems on this topic. Of course, sometimes 
other will be needed; in those cases there are precise references. 

It is obvious that most ofthe more elementary topics in this Chapter 3 have 
already been needed in the earlier chapters. Although we do assume prior 
knowledge of these basic topics, we have included precise statements of the 
most important concepts and facts for reference. Of course, the elementary 
material in this chapter could have been collected as a separate "Chapter 0" 
but this would have been artificial, and probably less useful to the reader. 
And since we do not assume that the reader knows the material on elliptic 
equations in Sobolev spaces, the corresponding sections should follow the 
two first chapters. 

Chapter 4 is concerned with the Green's function of the Laplacian on 
compact manifolds. This will be used to obtain both some regularity results 
and some inequalities that are not immediate consequences of the facts in 
Chapter 3. 

Chapter 5 provides some ofthe most useful methods for nonlinear analysis. 
As an exercise we use the variational method to solve an equation studied by 
Yam abe. The sketch of the proof is typical of the method. Then we solve 
Berger's problem and a problem posed by Nirenberg, for which we also use 
the results from Chapter 2 concerning the limiting case of the Sobolev 
imbedding theorem. 
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Chapter 6 is devoted to the Yamabe problem concerning the scalar curv
ature. Here the concept of best constants in Sobolev's inequalities plays an 
essential role. We close the chapter with a summary of the status of related 
problems concerning scalar curvature. 

Chapter 7 is concerned with the complex Monge-Ampere equation on 
compact Kahlerian manifolds. The existence of Einstein-Kahler metrics and 
the Calabi conjecture are problems which are equivalent to solving such 
equations. 

Lastly, Chapter 8 studies the real Monge-Ampere equation on a bounded 
convex set of [Rn. There is also a short discussion of the complex Monge
Ampere equation on a bounded pseudoconvex set of en. 

Throughout the book I have restricted my attention to those problems 
whose solution involves typical application of the methods. Of course, there 
are many other very interesting problems. For example, we should at least 
mention that, curiously, the Yam abe equation appears in the study of Yang
Mills fields, while a corresponding complex version is very close to the exist
ence of complex Kahler-Einstein metrics discussed in Chapter 7. 

It is my pleasure and privilege to express my deep thanks to my friend 
Jerry Kazdan who agreed to read the manuscript from the beginning to end. 
He suggested many mathematical improvements, and, needless to say, 
corrected many blunders of mine in this English version. I also have to state 
in this place my appreciation for the efficient and friendly help of Jiirgen 
Moser and Melvyn Berger for the publication of the manuscript. Pascal 
Cherrier and Philippe Delanoe deserve special mention for helping in the 
completion of the text. 

May 1982 Thierry Aubin 
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