Grundlehren der mathematischen Wissenschaften 252

A Series of Comprehensive Studies in Mathematics

Editors

M. Artin S. S. Chern J. L. Doob A. Grothendieck E. Heinz F. Hirzebruch L. Hörmander S. Mac Lane W. Magnus C. C. Moore J. K. Moser M. Nagata W. Schmidt D. S. Scott J. Tits B. L. van der Waerden

Managing Editors

M. Berger B. Eckmann S. R. S. Varadhan

Thierry Aubin

Nonlinear Analysis on Manifolds. Monge–Ampère Equations

Springer-Verlag New York Heidelberg Berlin Thierry Aubin Universite de Paris VI Mathematiques 4, place Jussieu 75230 Paris, Cedex 05 France

AMS Subject Classification (1980): 53 CXX

Library of Congress Cataloging in Publication Data Aubin, Thierry. Nonlinear analysis on manifolds, Monge-Ampère equations. (Grundlehren der mathematischen Wissenschaften; 252) Bibliography: p. Includes index. 1. Riemannian manifolds. 2. Monge-Ampère equations. I. Title. II. Series. QA649.A83 1982 516.92 82-19165

© 1982 by Springer-Verlag New York Inc. Softcover reprint of the hardcover 1st edition 1982 All rights reserved. No part of this book may be translated or reproduced in any form without written permission from Springer-Verlag, 175 Fifth Avenue, New York, New York 10010, U.S.A.

987654321

ISBN-13: 978-1-4612-5736-3 e-ISBN-13: 978-1-4612-5734-9 DOI: 10.1007/978-1-4612-5734-9

Preface

This volume is intended to allow mathematicians and physicists, especially analysts, to learn about nonlinear problems which arise in Riemannian Geometry.

Analysis on Riemannian manifolds is a field currently undergoing great development. More and more, analysis proves to be a very powerful means for solving geometrical problems. Conversely, geometry may help us to solve certain problems in analysis.

There are several reasons why the topic is difficult and interesting. It is very large and almost unexplored. On the other hand, geometric problems often lead to limiting cases of known problems in analysis, sometimes there is even more than one approach, and the already existing theoretical studies are inadequate to solve them. Each problem has its own particular difficulties.

Nevertheless there exist some standard methods which are useful and which we must know to apply them. One should not forget that our problems are motivated by geometry, and that a geometrical argument may simplify the problem under investigation. Examples of this kind are still too rare.

This work is neither a systematic study of a mathematical field nor the presentation of a lot of theoretical knowledge. On the contrary, I do my best to limit the text to the essential knowledge. I define as few concepts as possible and give only basic theorems which are useful for our topic. But I hope that the reader will find this sufficient to solve other geometrical problems by analysis.

The book is intended to be used as a reference and as an introduction to research. It can be divided into two parts, with each part containing four chapters. Part I is concerned with essential background knowledge. Part II develops methods which are applied in a concrete way to resolve specific problems.

Chapter 1 is devoted to Riemannian geometry. The specialists in analysis who do not know differential geometry will find, in the beginning of the chapter, the definitions and the results which are indispensable. Since it is useful to know how to compute both globally and in local coordinate charts, the proofs which we will present will be a good initiation. In particular, it is important to know Theorem 1.53, estimates on the components of the metric tensor in polar geodesic coordinates in terms of the curvature.

Chapter 2 studies Sobolev spaces on Riemannian manifolds. Successively, we will treat density problems, the Sobolev imbedding theorem, the Kondrakov theorem, and the study of the limiting case of the Sobolev imbedding theorem. These theorems will be used constantly. Considering the importance of Sobolev's theorem and also the interest of the proofs, three proofs of the theorem are given, the original proof of Sobolev, that of Gagliardo and Nirenberg, and my own proof, which enables us to know the value of the norm of the imbedding, an introduction to the notion of best constants in Sobolev's inequalities. This new concept is crucial for solving limiting cases.

In Chapter 3 we will find, usually without proof, a substantial amount of analysis. The reader is assumed to know this background material. It is stated here as a reference and summary of the versions of results we will be using. There are as few results as possible. I choose only the most useful and applicable ones so that the reader does not drown in a host of results and lose the main point. For instance, it is possible to write a whole book on the regularity of weak solution for elliptic equations without discussing the existence of solutions. Here there are six theorems on this topic. Of course, sometimes other will be needed; in those cases there are precise references.

It is obvious that most of the more elementary topics in this Chapter 3 have already been needed in the earlier chapters. Although we do assume prior knowledge of these basic topics, we have included precise statements of the most important concepts and facts for reference. Of course, the elementary material in this chapter could have been collected as a separate "Chapter 0" but this would have been artificial, and probably less useful to the reader. And since we do not assume that the reader knows the material on elliptic equations in Sobolev spaces, the corresponding sections should follow the two first chapters.

Chapter 4 is concerned with the Green's function of the Laplacian on compact manifolds. This will be used to obtain both some regularity results and some inequalities that are not immediate consequences of the facts in Chapter 3.

Chapter 5 provides some of the most useful methods for nonlinear analysis. As an exercise we use the variational method to solve an equation studied by Yamabe. The sketch of the proof is typical of the method. Then we solve Berger's problem and a problem posed by Nirenberg, for which we also use the results from Chapter 2 concerning the limiting case of the Sobolev imbedding theorem. Chapter 6 is devoted to the Yamabe problem concerning the scalar curvature. Here the concept of best constants in Sobolev's inequalities plays an essential rôle. We close the chapter with a summary of the status of related problems concerning scalar curvature.

Chapter 7 is concerned with the complex Monge–Ampère equation on compact Kählerian manifolds. The existence of Einstein–Kähler metrics and the Calabi conjecture are problems which are equivalent to solving such equations.

Lastly, Chapter 8 studies the real Monge–Ampère equation on a bounded convex set of \mathbb{R}^n . There is also a short discussion of the complex Monge–Ampère equation on a bounded pseudoconvex set of \mathbb{C}^n .

Throughout the book I have restricted my attention to those problems whose solution involves typical application of the methods. Of course, there are many other very interesting problems. For example, we should at least mention that, curiously, the Yamabe equation appears in the study of Yang– Mills fields, while a corresponding complex version is very close to the existence of complex Kähler–Einstein metrics discussed in Chapter 7.

It is my pleasure and privilege to express my deep thanks to my friend Jerry Kazdan who agreed to read the manuscript from the beginning to end. He suggested many mathematical improvements, and, needless to say, corrected many blunders of mine in this English version. I also have to state in this place my appreciation for the efficient and friendly help of Jürgen Moser and Melvyn Berger for the publication of the manuscript. Pascal Cherrier and Philippe Delanoë deserve special mention for helping in the completion of the text.

May 1982

Thierry Aubin

Contents

Chapter 1 Riemannian Geometry

§1. Introduction to Differential Geometry .				 1
1.1 Tangent Space				 2
1.2 Connection				 3
1.3 Curvature				 3
§2. Riemannian Manifold				 4
2.1 Metric Space				 5
2.2 Riemannian Connection				 6
2.3 Sectional Curvature. Ricci Tensor. Scalar	Curvat	ure .		 6
2.4 Parallel Displacement. Geodesic				 8
§3. Exponential Mapping				 9
§4. The Hopf–Rinow Theorem				 13
§5. Second Variation of the Length Integral				 15
5.1 Existence of Tubular Neighborhoods .				 15
5.2 Second Variation of the Length Integral				 15
5.3 Myers' Theorem			•	 16
§6. Jacobi Field				 17
§7. The Index Inequality				 18
§8. Estimates on the Components of the Metric T	Fensor			 20
§9. Integration over Riemannian Manifolds .			•	 23
§10. Manifold with Boundary				 25
10.1. Stokes' Formula				 26
§11. Harmonic Forms				 26
11.1. Oriented Volume Element				 26
11.2. Laplacian				 27
11.3. Hodge Decomposition Theorem				 29
11.4. Spectrum				 31

Chapter 2 Sobolev Spaces

occord a participation					
§1. First Definitions					32
§2. Density Problems					33
§3. Sobolev Imbedding Theorem .					35
§4. Sobolev's Proof					37

38

§5. Proof by Gagliardo and Nirenberg .					
S6 Now Droof					

§6. New Proof	39
§7. Sobolev Imbedding Theorem for Riemannian Manifolds	44
§8. Optimal Inequalities	50
§9. Sobolev's Theorem for Compact Riemannian Manifolds with	
Boundary	50
§10. The Kondrakov Theorem	53
§11. Kondrakov's Theorem for Riemannian Manifolds	55
§12. Examples	56
§13. Improvement of the Best Constants	57
§14. The Case of the Sphere	61
§15. The Exceptional Case of the Sobolev Imbedding Theorem	63
§16. Moser's Results	65
§17. The Case of the Riemannian Manifolds	67
§18. Problems of Traces	69

Chapter 3 Background Material

§1. Differential Calculus771.1. The Mean Value Theorem771.2. Inverse Function Theorem771.3. Cauchy's Theorem771.3. Cauchy's Theorem77\$2. Four Basic Theorems of Functional Analysis772.1. Hahn-Banach Theorem772.2. Open Mapping Theorem772.3. The Banach-Steinhaus Theorem772.4. Ascoli's Theorem773.1. Banach's Theorem773.1. Banach's Theorem773.2. The Leray-Schauder Theorem773.3. The Fredholm Theorem774.1. Dominated Convergence Theorem774.2. Fatou's Theorem774.3. The Second Lebesgue Theorem774.4. Rademacher's Theorem775.5. The L_p Spaces775.1. Regularization885.2. Radon's Theorem886.1. Weak Solution886.3. The Schauder Interior Estimates887.1. Hölder's Inequality88
1.1. The Mean Value Theorem71.2. Inverse Function Theorem71.3. Cauchy's Theorem71.3. Cauchy's Theorem7\$2. Four Basic Theorems of Functional Analysis72.1. Hahn-Banach Theorem72.2. Open Mapping Theorem72.3. The Banach-Steinhaus Theorem72.4. Ascoli's Theorem7\$3. Weak Convergence. Compact Operators73.1. Banach's Theorem73.2. The Leray-Schauder Theorem73.3. The Fredholm Theorem74.1. Dominated Convergence Theorem74.2. Fatou's Theorem74.3. The Second Lebesgue Theorem74.4. Rademacher's Theorem75. The L_p Spaces75. Regularization85.2. Radon's Theorem86.1. Weak Solution86.3. The Schauder Interior Estimates887. Inequalities871. Hölder's Inequality8
1.2. Inverse Function Theorem71.3. Cauchy's Theorem71.3. Cauchy's Theorem72. Four Basic Theorems of Functional Analysis72.1. Hahn-Banach Theorem72.2. Open Mapping Theorem72.3. The Banach-Steinhaus Theorem72.4. Ascoli's Theorem72.5. Weak Convergence. Compact Operators73.1. Banach's Theorem73.2. The Leray-Schauder Theorem73.3. The Fredholm Theorem74.1. Dominated Convergence Theorem74.2. Fatou's Theorem74.3. The Second Lebesgue Theorem74.4. Rademacher's Theorem75.5. The L_p Spaces75.1. Regularization86.1. Weak Solution86.2. Regularity Theorems88. The Schauder Interior Estimates88. The Qualities87. Inequalities88. The Height State88. The Kenauder Interior Estimates88. The Kenauler Interior Estimates88. The Kenauler Interior Estimates88. The Kenauler Interior Estimates88. The Kenauler Interior Estimates8 <t< td=""></t<>
1.3. Cauchy's Theorem7 $\$2.$ Four Basic Theorems of Functional Analysis7 $\$2.$ Four Basic Theorems of Functional Analysis7 $\$2.1$ Hahn-Banach Theorem7 $$2.2$ Open Mapping Theorem7 $$2.3$ The Banach-Steinhaus Theorem7 $$2.3$ The Banach-Steinhaus Theorem7 $$2.4$ Ascoli's Theorem7 $$2.4$ Ascoli's Theorem7 $$2.5$ Weak Convergence. Compact Operators7 $$3. Weak Convergence. Compact Operators7$3.1 Banach's Theorem7$3.2 The Leray-Schauder Theorem7$3.3 The Fredholm Theorem7$3.4 The Lebesgue Integral7$4.1 Dominated Convergence Theorem7$4.2 Fatou's Theorem7$4.3 The Second Lebesgue Theorem7$4.4 Rademacher's Theorem7$5.4 The L_p Spaces7$5.1 Regularization8$6.1 Weak Solution8$6.2 Regularity Theorems8$6.3 The Schauder Interior Estimates8$7.1 Hölder's Inequality8$
§2. Four Basic Theorems of Functional Analysis72.1. Hahn-Banach Theorem72.2. Open Mapping Theorem72.3 The Banach-Steinhaus Theorem72.4. Ascoli's Theorem72.4. Ascoli's Theorem73.1. Banach's Theorem73.2. The Leray-Schauder Theorem73.3. The Fredholm Theorem73.4. The Lebesgue Integral74.1. Dominated Convergence Theorem74.2. Fatou's Theorem74.3. The Second Lebesgue Theorem74.4. Rademacher's Theorem74.5. Fubini's Theorem75.1. Regularization75.2. Radon's Theorem86.1. Weak Solution86.3. The Schauder Interior Estimates8§7. Inequalities8§7. Inequalities8§7. Inequalities8
2.1. Hahn-Banach Theorem72.2. Open Mapping Theorem72.3 The Banach-Steinhaus Theorem72.4. Ascoli's Theorem72.4. Ascoli's Theorem72.4. Ascoli's Theorem72.4. Ascoli's Theorem72.4. Ascoli's Theorem72.5. Weak Convergence. Compact Operators73.1. Banach's Theorem73.2. The Leray-Schauder Theorem73.3. The Fredholm Theorem73.4. The Lebesgue Integral74.1. Dominated Convergence Theorem74.2. Fatou's Theorem74.3. The Second Lebesgue Theorem74.4. Rademacher's Theorem74.5. Fubini's Theorem75. The L_p Spaces75.1. Regularization85.2. Radon's Theorem86.1. Weak Solution86.3. The Schauder Interior Estimates8§7. Inequalities8§7. Inequalities8§7. Inequalities8
2.2. Open Mapping Theorem72.3 The Banach-Steinhaus Theorem72.4. Ascoli's Theorem72.4. Ascoli's Theorem73.1. Banach's Theorem73.2. The Leray-Schauder Theorem73.3. The Fredholm Theorem73.4. Dominated Convergence Theorem74.1. Dominated Convergence Theorem74.2. Fatou's Theorem74.3. The Second Lebesgue Theorem74.4. Rademacher's Theorem74.5. Fubini's Theorem75.1. Regularization75.2. Radon's Theorem85.2. Radon's Theorem86.1. Weak Solution86.3. The Schauder Interior Estimates8§7. Inequalities8§7. Inequalities8§7. Inequalities8§7. Inequalities8§7. Inequalities8§7. Inequalities8§7. Inequalities8§7. Inequalities8§7. Inequalities8
2.3 The Banach-Steinhaus Theorem72.4. Ascoli's Theorem7§3. Weak Convergence. Compact Operators7§3. Weak Convergence. Compact Operators73.1. Banach's Theorem73.2. The Leray-Schauder Theorem73.3. The Fredholm Theorem7§4. The Lebesgue Integral7 $4.1.$ Dominated Convergence Theorem7 $4.2.$ Fatou's Theorem7 $4.3.$ The Second Lebesgue Theorem7 $4.4.$ Rademacher's Theorem7 $4.5.$ Fubini's Theorem7 $5.$ The L_p Spaces7 $5.1.$ Regularization8 $5.2.$ Radon's Theorem8 $6.1.$ Weak Solution8 $6.3.$ The Schauder Interior Estimates8 $87.1.$ Hölder's Inequality8 $7.1.$ Hölder's Inequality8
2.4. Ascoli's Theorem77§3. Weak Convergence. Compact Operators773.1. Banach's Theorem773.2. The Leray–Schauder Theorem773.3. The Fredholm Theorem77§4. The Lebesgue Integral774.1. Dominated Convergence Theorem774.2. Fatou's Theorem774.3. The Second Lebesgue Theorem774.4. Rademacher's Theorem774.5. Fubini's Theorem77§5. The L_p Spaces77§6. Elliptic Differential Operators88§6. Elliptic Differential Operators886.1. Weak Solution886.3. The Schauder Interior Estimates88§7. Inequalities88§7. Inequalities88§7. Inequalities88§7. Inequality88§7. Inequality88
§3. Weak Convergence. Compact Operators7.3.1. Banach's Theorem7.3.2. The Leray–Schauder Theorem7.3.3. The Fredholm Theorem7.§4. The Lebesgue Integral7. $4.1.$ Dominated Convergence Theorem7. $4.2.$ Fatou's Theorem7. $4.3.$ The Second Lebesgue Theorem7. $4.4.$ Rademacher's Theorem7. $4.5.$ Fubini's Theorem7. $5.1.$ Regularization7. $5.2.$ Radon's Theorem88 $5.2.$ Radon's Theorem88 $6.1.$ Weak Solution88 $6.3.$ The Schauder Interior Estimates88 $7.1.$ Hölder's Inequality88 $7.1.$ Hölder's Inequality88
3.1. Banach's Theorem 77 3.2. The Leray–Schauder Theorem 77 3.3. The Fredholm Theorem 77 3.3. The Fredholm Theorem 77 3.3. The Fredholm Theorem 77 \$4. The Lebesgue Integral 77 4.1. Dominated Convergence Theorem 77 4.2. Fatou's Theorem 77 4.3. The Second Lebesgue Theorem 77 4.4. Rademacher's Theorem 77 4.5. Fubini's Theorem 77 5. Fubini's Theorem 77 §5. The L_p Spaces 77 §5. Regularization 88 §6. Elliptic Differential Operators 88 §6. Elliptic Differential Operators 88 §6.3. The Schauder Interior Estimates 88 §7. Inequalities 88 §7. Inequalities 88 §7.1. Hölder's Inequality 88
3.2. The Leray–Schauder Theorem 7 3.3. The Fredholm Theorem 7 3.3. The Fredholm Theorem 7 \$4. The Lebesgue Integral 7 4.1. Dominated Convergence Theorem 7 4.2. Fatou's Theorem 7 4.3. The Second Lebesgue Theorem 7 4.4. Rademacher's Theorem 7 4.5. Fubini's Theorem 7 5. The L_p Spaces 7 5.1. Regularization 8 5.2. Radon's Theorem 8 6.1. Weak Solution 8 6.2. Regularity Theorems 8 6.3. The Schauder Interior Estimates 8 §7. Inequalities 8 §7. Inequalities 8 §7. Inequalities 8
3.3. The Fredholm Theorem 7 §4. The Lebesgue Integral 7 4.1. Dominated Convergence Theorem 7 4.1. Dominated Convergence Theorem 7 4.1. Dominated Convergence Theorem 7 4.2. Fatou's Theorem 7 4.3. The Second Lebesgue Theorem 7 4.4. Rademacher's Theorem 7 4.5. Fubini's Theorem 7 5. Fubini's Theorem 7 §5. The L_p Spaces 7 §5. Regularization 8 §6. Elliptic Differential Operators 8 §6. Elliptic Differential Operators 8 6.1. Weak Solution 8 6.3. The Schauder Interior Estimates 8 §7. Inequalities 8 §7. Inequalities 8
§4. The Lebesgue Integral 7 4.1. Dominated Convergence Theorem 7 4.2. Fatou's Theorem 7 4.3. The Second Lebesgue Theorem 7 4.4. Rademacher's Theorem 7 4.5. Fubini's Theorem 7 5. The L_p Spaces 7 5.1. Regularization 8 5.2. Radon's Theorem 8 6.1. Weak Solution 8 6.2. Regularity Theorems 8 6.3. The Schauder Interior Estimates 8 7.1. Hölder's Inequality 8 7.1. Hölder's Inequality 8
4.1. Dominated Convergence Theorem 74 4.2. Fatou's Theorem 77 4.3. The Second Lebesgue Theorem 77 4.3. The Second Lebesgue Theorem 77 4.4. Rademacher's Theorem 77 4.5. Fubini's Theorem 77 §5. The L_p Spaces 77 §5. The L _p Spaces 77 §6. Elliptic Differential Operators 88 §6. Elliptic Differential Operators 88 6.1. Weak Solution 88 6.2. Regularity Theorems 88 6.3. The Schauder Interior Estimates 88 §7. Inequalities 88 §7. Inequalities 88 §7. Inequalities 88
4.2. Fatou's Theorem774.3. The Second Lebesgue Theorem774.4. Rademacher's Theorem774.5. Fubini's Theorem774.5. Fubini's Theorem77§5. The L_p Spaces775.1. Regularization885.2. Radon's Theorem886.1. Weak Solution886.1. Weak Solution886.2. Regularity Theorems886.3. The Schauder Interior Estimates88§7. Inequalities887.1. Hölder's Inequality88
4.3. The Second Lebesgue Theorem74.4. Rademacher's Theorem74.5. Fubini's Theorem74.5. Fubini's Theorem7§5. The L_p Spaces75.1. Regularization85.2. Radon's Theorem8§6. Elliptic Differential Operators86.1. Weak Solution86.2. Regularity Theorems86.3. The Schauder Interior Estimates8§7. Inequalities87.1. Hölder's Inequality8
4.4. Rademacher's Theorem74.5. Fubini's Theorem7 $4.5.$ Fubini's Theorem7 $5.$ The L_p Spaces7 $5.1.$ Regularization7 $5.2.$ Radon's Theorem8 $5.2.$ Radon's Theorem8 $6.1.$ Weak Solution8 $6.1.$ Weak Solution8 $6.2.$ Regularity Theorems8 $6.3.$ The Schauder Interior Estimates8 $7.1.$ Hölder's Inequality8
4.5. Fubini's Theorem7§5. The L_p Spaces7§5. The L_p Spaces75.1. Regularization85.2. Radon's Theorem8§6. Elliptic Differential Operators86.1. Weak Solution86.2. Regularity Theorems86.3. The Schauder Interior Estimates8§7. Inequalities87.1. Hölder's Inequality8
§5. The L _p Spaces 7 5.1. Regularization 8 5.2. Radon's Theorem 8 §6. Elliptic Differential Operators 8 6.1. Weak Solution 8 6.2. Regularity Theorems 8 6.3. The Schauder Interior Estimates 8 §7. Inequalities 8 7.1. Hölder's Inequality 8
5.1. Regularization 88 5.2. Radon's Theorem 88 §6. Elliptic Differential Operators 88 6.1. Weak Solution 88 6.2. Regularity Theorems 88 6.3. The Schauder Interior Estimates 88 §7. Inequalities 88 7.1. Hölder's Inequality 88
5.2. Radon's Theorem 8 §6. Elliptic Differential Operators 8 6.1. Weak Solution 8 6.2. Regularity Theorems 8 6.3. The Schauder Interior Estimates 8 §7. Inequalities 8 7.1. Hölder's Inequality 8
§6. Elliptic Differential Operators 8 6.1. Weak Solution 8 6.2. Regularity Theorems 8 6.3. The Schauder Interior Estimates 8 §7. Inequalities 8 7.1. Hölder's Inequality 8
6.1. Weak Solution 8 6.2. Regularity Theorems 8 6.3. The Schauder Interior Estimates 8 §7. Inequalities 8 7.1. Hölder's Inequality 8
6.2. Regularity Theorems 8 6.3. The Schauder Interior Estimates 8 §7. Inequalities 8 7.1. Hölder's Inequality 8
6.3. The Schauder Interior Estimates 8 §7. Inequalities 8 7.1. Hölder's Inequality 8
§7. Inequalities 8 7.1. Hölder's Inequality 8
7.1. Hölder's Inequality
7.2. Clarkson's Inequalities
7.3. Convolution Product

	7.4. The Calderon-Zygmund Inequalit	у								90
	7.5. Korn–Lichtenstein Theorem									90
	7.6. Interpolation Inequalities									93
§8.	Maximum Principle									96
	8.1. Hopf's Maximum Principle									96
	8.2. Uniqueness Theorem									96
	8.3. Maximum Principle for Nonlinear	Ell	ipti	сO	per	atoi	r of			
	Order Two									97
	8.4. Generalized Maximum Principle									98
§9.	Best Constants									99
	9.1. Application to Sobolev Spaces .	•				·			•	100

Chapter 4

Green's Function for Riemannian Manifolds

§1. Linear Elliptic Equations			101
1.1. First Nonzero Eigenvalue λ of Δ			101
1.2. Existence Theorem for the Equation $\Delta \varphi = f$.			104
\$2. Green's Function of the Laplacian			106
2.1. Parametrix			106
2.2. Green's Formula			107
2.3. Green's Function for Compact Manifolds			108
2.4. Green's Function for Compact Manifolds with Bounda	ry		112

Chapter 5

The Methods

§1 .	Yamabe's Equation .										115
	1.1. Yamabe's Method										115
§2.	Berger's Problem										119
	2.1. The Positive Case										121
§3.	Nirenberg's Problem										122
	3.1. A Nonlinear Theore	em	of F	red	hol	m					122
	3.2. Open Questions .										124

Chapter 6

The Scalar Curvature

§1. The Yamabe Problem.										125
1.1. Yamabe's Functional										126
1.2. Yamabe's Theorem .										126
§2. The Positive Case										129
2.1. Geometrical Application	IS									132
2.2. Open Questions										134
§3. Other Problems										135
3.1. Topological Meaning of	the	Sc	alaı	C	irva	tur	e			135
3.2. Kazdan and Warner's Pr	robl	lem	۱.							136

Chapter 7

Complex Monge-Ampère Equation on Compact Kähler Manifolds

§1. Kähler Manifolds	139
1.1 First Chern Class	140
1.2. Change of Kähler Metrics. Admissible Functions	141
§2. Calabi's Conjecture	142
§3. Einstein–Kähler Metrics	143
§4. Complex Monge–Ampère Equation	144
4.1. About Regularity	144
4.2. About Uniqueness	144
\$5. Theorem of Existence (the Negative Case)	145
86. Existence of Kähler–Einstein Metric	146
§7. Theorem of Existence (the Null Case)	147
88. Proof of Calabi's Conjecture	150
89. The Positive Case	150
\$10. A Priori Estimate for $\Delta \phi$	150
\$11. A Priori Estimate for the Third Derivatives of Mixed Type	153
\$12. The Method of Lower and Upper Solutions	154
Chapter 8	
Manga Ampère Equations	
Monge-Ampere Equations	
§1. Monge–Ampère Equations on Bounded Domains of \mathbb{R}^n	157
1.1. The Fundamental Hypothesis	157
1.2. Extra Hypothesis	158
1.3. Theorem of Existence	159
§2. The Estimates	160
2.1. The First Estimates	160
2.2. C^2 -Estimate	161
2.3. C^3 -Estimate	164
§3. The Radon Measure $\mathcal{M}(\varphi)$	169
§4. The Functional $\mathscr{I}(\varphi)$	174
4.1. Properties of $\mathscr{I}(\varphi)$	174
§5. Variational Problem	179
§6. The Complex Monge–Ampère Equation	182
6.1. Bedford's and Taylor's Results	182
6.2. The Measure $\mathfrak{M}(\omega)$	183
6.3. The Functional $\Im(\phi)$.	183
6.4. Some Properties of $\mathfrak{I}(a)$	183
δ 7. The Case of Radially Symmetric Functions	184
71 Variational Problem	185
72 An Open Problem	186
88 A New Method	186
	100
Bibliography	189
Subject Index	199
Notation	203
	200