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Preface 

This work describes the fundamental principles, problems, and methods 
of classical mechanics focussing on its mathematical aspects. The authors 
have striven to give an exposition stressing the working apparatus of classical 
mechanics, rather than its physical foundations or applications. This appara
tus is basically contained in Chapters 1, 3,4 and 5. 

Chapter 1 is devoted to the fundamental mathematical models which are 
usually employed to describe the motion of real mechanical systems. Special 
consideration is given to the study of motion under constraints, and also 
to problems concerned with the realization of constraints in dynamics. 

Chapter 3 is concerned with the symmetry groups of mechanical systems 
and the corresponding conservation laws. Also discussed are various aspects 
of the theory of the reduction of order for systems with symmetry, often 
used in applications. 

Chapter 4 contains a brief survey of various approaches to the problem 
of the integrability of the equations of motion, and discusses some of the 
most general and effective methods of integrating these equations. Various 
classical examples of integrated problems are outlined. The material pre
sented in this chapter is used in Chapter 5, which is devoted to one of the 
most fruitful branches of mechanics - perturbation theory. The main task 
of perturbation theory is the investigation of problems of mechanics which 
are "close" to exactly integrable problems. Elements of this theory, in partic
ular, the widely used "averaging principle", have emerged in celestial me
chanics from attempts to take into account the mutual gravitational perturba
tions of planets in the solar system. 

Chapter 6 is related to Chapters 4 and 5, and studies the theoretical possi
bility of integrating (in a precisely defined sense) the equations of motion. 
Approximate integration methods are discussed in Chapter 5: their signifi
cance is increased by the fact that integrable systems occur so rarely in 
reality. Also in this chapter there is a study of the n-body problem with 
special consideration given to the problem of the stability of the solar system. 
Some of the classical problems of celestial mechanics are treated in Chapter 2, 
including the integrable 2-body problem, and the classification of final mo
tions in the 3-body problem. This chapter also contains an analysis of col
lisions, various aspects of regularization in the general problem of n points 
interacting gravitationally, and various limiting variants of this problem. 
Elements of the theory of oscillations are given in Chapter 7. 



XIV Preface 

This text is not a complete exposition of these topics and we do not give 
detailed proofs. Our main purpose is to acquaint the reader with classical 
mechanics as a whole, in both its classical and its contemporary aspects. 
The interested reader will find the necessary proofs, and more detailed infor
mation, in the works listed at the end of this volume. 




