Mathematical Aspects of Classical and Celestial Mechanics

V.I. Arnold V.V. Kozlov A.I. Neishtadt

Mathematical Aspects of Classical and Celestial Mechanics

Second Edition

With 81 Figures

Springer

Consulting Editors of the Series: A.A. Agrachev, A.A. Gonchar, E.F. Mishchenko, N.M. Ostianu, V.P. Sakharova, A.B. Zhishchenko

Title of the Russian edition: Itogi nauki i tekhniki, Sovremennye problemy matematiki, Fundamental'nye napravleniya, Vol. 3, Dinamicheskie sistemy 3 Publisher VINITI, Moscow 1985

Second Printing 1997 of the Second Edition 1993, which was originally published as Dynamical Systems III, Volume 3 of the Encyclopaedia of Mathematical Sciences.

Die Deutsche Bibliothek - CIP-Einheitsaufnahme

Arnol'd, Vladimir I.: Mathematical aspects of classical and celestial mechanics / V. I. Arnold; V. V. Kozlov; A. I. Neishtadt. [Transl. A. Iacob]. – 2. printing of the 2. ed. – Berlin; Heidelberg; New York; Barcelona; Budapest; Hong Kong; London; Milan; Paris; Santa Clara; Singapore; Tokyo: Springer, 1997 Früher u.d.T.: Dynamical systems ISBN 3-540-61224-6 NE: Kozlov, V. V.:; Neištadt, A. I.:

Mathematics Subject Classification (1991): Primary 34-02, 58-02, 70-02, Secondary 34C35, 34C40, 34D10, 53C57, 58Fxx 70D05, 70D10, 70Exx, 70Fxx, 70Hxx, 70Jxx

ISBN-13: 978-3-540-61224-7 e-ISBN-13: 978-3-642-61237-4 DOI: 10.1007/978-3-642-61237-4

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are liable for prosecution under the German Copyright Law.

> © Springer-Verlag Berlin Heidelberg 1997 Reprint of the original edition 1993

> > SPIN: 10534695 41/3143-5 4 3 2 1 0

List of Editors, Authors and Translators

Editor-in-Chief

R.V. Gamkrelidze, Russian Academy of Sciences, Steklov Mathematical Institute, ul. Vavilova 42, 117966 Moscow, Institute for Scientific Information (VINITI), ul. Usievicha 20 a, 125219 Moscow, Russia; e-mail: gam@ipsun.ras.ru

Consulting Editor

V.I. Arnold, Steklov Mathematical Institute, ul. Vavilova 42, 117966 Moscow, Russia; e-mail: arnold@class.mi.ras.ru, and CEREMADE, Université Paris 9 – Dauphine, Place du Marechal de Lattre de Tassigny, F-75775 Paris Cedex 16-e, France; e-mail: arnold@ceremade.dauphine.fr

Authors

- V.I. Arnold, Steklov Mathematical Institute, ul. Vavilova 42, 117966 Moscow, Russia; e-mail: arnold@class.mi.ras.ru, and CEREMADE, Université Paris 9 – Dauphine, Place du Marechal de Lattre de Tassigny, F-75775 Paris Cedex 16-e, France; e-mail: arnold@ceremade.dauphine.fr
- V.V. Kozlov, Department of Mathematics and Mechanics, University of Moscow, 119899 Moscow, Russia
- A.I. Neishtadt, Space Research Institute, Moscow, Russia

Translator

A. Iacob, Department of Mathematics, Brandeis University, Waltham, MA 02254, USA

Mathematical Aspects of Classical and Celestial Mechanics

V.I. Arnold V.V. Kozlov A.I. Neishtadt

Translated from the Russian by A. Iacob

Contents

Chapter 1. Basic Principles of Classical Mechanics	1
§ 1. Newtonian Mechanics	1
1.1. Space, Time, Motion	1
1.2. The Newton-Laplace Principle of Determinacy	2
1.3. The Principle of Relativity	4
1.4. Basic Dynamical Quantities. Conservation Laws	6
§ 2. Lagrangian Mechanics	9
2.1. Preliminary Remarks	9
2.2. Variations and Extremals	10
2.3. Lagrange's Equations	12
2.4. Poincaré's Equations	13
2.5. Constrained Motion	16
§ 3. Hamiltonian Mechanics	20
3.1. Symplectic Structures and Hamilton's Equations	20
3.2. Generating Functions	22
3.3. Symplectic Structure of the Cotangent Bundle	23
3.4. The Problem of n Point Vortices \ldots \ldots \ldots \ldots	24
3.5. The Action Functional in Phase Space	26
3.6. Integral Invariants	27
3.7. Applications to the Dynamics of Ideal Fluids	29
3.8. Principle of Stationary Isoenergetic Action	30
§ 4. Vakonomic Mechanics	31
4.1. Lagrange's Problem	32
4.2. Vakonomic Mechanics	33

	4.3. The Principle of Determinacy							36
	4.4. Hamilton's Equations in Redundant Coordinates							37
§ 5.	Hamiltonian Formalism with Constraints							38
	5.1. Dirac's Problem							38
	5.2. Duality							40
§ 6.	Realization of Constraints							40
U	6.1. Various Methods of Realizing Constraints							40
	6.2. Holonomic Constraints							41
	6.3. Anisotropic Friction							42
	6.4. Adjoining Masses							43
	6.5. Adjoining Masses and Anisotropic Friction							46
	6.6. Small Masses							47
		•	·	•	•	•	•	• •
Cha	apter 2. The <i>n</i> -Body Problem							49
								40
§1.	The Two-Body Problem	•	•	·	·	·	·	49
	1.1. Orbits	•	·	·	•	•	•	49
	1.2. Anomalies	•	·	·	·	·	·	53
	1.3. Collisions and Regularization	•	•	•	•	•	•	55
	1.4. Geometry of the Kepler Problem	•	·	·	•	•	·	57
§2.	Collisions and Regularization	•	•	•	•	•	•	58
	2.1. Necessary Conditions for Stability	•	•	•	•	•	•	58
	2.2. Simultaneous Collisions	•	•	•	•	•	•	59
	2.3. Binary Collisions	•	•	•	•	•	•	60
	2.4. Singularities of Solutions in the <i>n</i> -Body Problem	•	•		•	•	•	62
§3.	Particular Solutions	•	•	•	•		•	64
	3.1. Central Configurations	•	•	•	•		•	65
	3.2. Homographic Solutions	•	•		•	•	•	65
	3.3. The Amended Potential and Relative Equilibria	•	•		•		•	66
§4.	Final Motions in the Three-Body Problem	•	•		•		•	67
	4.1. Classification of Final Motions According to Chaz	y					•	67
	4.2. Symmetry of Past and Future	•	•				•	68
§ 5.	The Restricted Three-Body Problem	•						69
	5.1. Equations of Motion. The Jacobi Integral							69
	5.2. Relative Equilibria and the Hill Region							71
	5.3. Hill's Problem	•						72
§6.	Ergodic Theorems in Celestial Mechanics							75
0	6.1. Stability in the Sense of Poisson							75
	6.2. Probability of Capture							76
								-
Cha	pter 3. Symmetry Groups and Reduction (Lowering the	C)rc	ler)		•	78
§ 1.	Symmetries and Linear First Integrals							78
J 11	1.1. E. Noether's Theorem					•		78
	1.2. Symmetries in Nonholonomic Mechanics							82

Contents	5
----------	---

1.4. Symmetries in Hamiltonian Mechanics 84 § 2. Reduction of Systems with Symmetry 86 2.1. Lowering the Order (the Lagrangian Aspect) 86 2.2. Lowering the Order (the Hamiltonian Aspect) 91 2.3. Examples: Free Motion of a Rigid Body and the Three-Body Problem 96 § 3. Relative Equilibria and Bifurcations of Invariant Manifolds 101 3.1. Relative Equilibria and the Amended Potential 101 3.2. Invariant Manifolds, Regions of Possible Motions, and Bifurcation Sets 102 3.3. The Bifurcation Set in the Planar Three-Body Problem 104 3.4. Bifurcation Sets and Invariant Manifolds in the Motion of a Heavy Rigid Body with a Fixed Point 105 Chapter 4. Integrable Systems and Integration Methods 107 § 1. Brief Survey of Various Approaches to the Integrability of Hamiltonian Systems 107 1.1. Quadratures 111 § 2. Complete Integrability 109 1.3. Normal Forms 111 § 2. Completely Integrable Systems 114 2.1. Action-Angle Variables 114 2.2. Noncommutative Sets of First Integrals 118 2.3. Examples of Completely Integrable Systems 119 § 3. Some Methods of Integrating Hamiltonian Systems		1.3. Symmetries in Vakonomic Mechanics	. 84
 § 2. Reduction of Systems with Symmetry		1.4. Symmetries in Hamiltonian Mechanics	. 84
2.1. Lowering the Order (the Lagrangian Aspect) 86 2.2. Lowering the Order (the Hamiltonian Aspect) 91 2.3. Examples: Free Motion of a Rigid Body and the Three-Body Problem 91 2.3. Relative Equilibria and Bifurcations of Invariant Manifolds 101 3.1. Relative Equilibria and the Amended Potential 101 3.1. Relative Equilibria and the Amended Potential 101 3.1. Relative Equilibria and the Amended Potential 102 3.3. The Bifurcation Sets 102 3.3. The Bifurcation Set in the Planar Three-Body Problem 104 3.4. Bifurcation Sets and Invariant Manifolds in the Motion of a Heavy Rigid Body with a Fixed Point 105 Chapter 4. Integrable Systems and Integration Methods 107 1.1. Quadratures 107 1.1. Quadratures 107 1.2. Complete Integrability 109 1.3. Normal Forms 111 2. Completely Integrable Systems 114 2.1. Action-Angle Variables 114 2.1. Action-Angle Variables 114 2.2. Noncommutative Sets of First Integrals 118 2.3. Examples of Completely Integrable Systems 124 3.1. Method of Separation of Variables 124 3.1. Method of L-A (Lax) Pairs 129 <	§ 2.	Reduction of Systems with Symmetry	. 86
2.2. Lowering the Order (the Hamiltonian Aspect) 91 2.3. Examples: Free Motion of a Rigid Body and the Three-Body Problem 96 § 3. Relative Equilibria and Bifurcations of Invariant Manifolds 101 3.1. Relative Equilibria and the Amended Potential 101 3.2. Invariant Manifolds, Regions of Possible Motions, and Bifurcation Sets 102 3.3. The Bifurcation Set in the Planar Three-Body Problem 104 3.4. Bifurcation Sets and Invariant Manifolds in the Motion of a Heavy Rigid Body with a Fixed Point 105 Chapter 4. Integrable Systems and Integration Methods 107 1.1. Quadratures 107 1.2. Complete Integrability 109 1.3. Normal Forms 114 2. Noncommutative Sets of First Integrals 114 2. Noncommutative Sets of First Integrals 114 2. Noncommutative Sets of Variables 114 2. Nethods of Integrating Hamiltonian Systems 119 § 3. Some Methods of Integration of Variables 124 3.1. Method of Separation of Variables 131 4.1. Differential Equations with Invariant Measure 131 4.2. Some Solved Problems of Nonholonomic Mechanics 138 1.1. The Averaging Principle 138 <t< td=""><td>Ū</td><td>2.1. Lowering the Order (the Lagrangian Aspect)</td><td>. 86</td></t<>	Ū	2.1. Lowering the Order (the Lagrangian Aspect)	. 86
2.3. Examples: Free Motion of a Rigid Body and the Three-Body Problem 96 § 3. Relative Equilibria and Bifurcations of Invariant Manifolds 101 3.1. Relative Equilibria and the Amended Potential 101 3.2. Invariant Manifolds, Regions of Possible Motions, and Bifurcation Sets 102 3.3. The Bifurcation Set in the Planar Three-Body Problem 104 3.4. Bifurcation Sets and Invariant Manifolds in the Motion of a Heavy Rigid Body with a Fixed Point 105 Chapter 4. Integrable Systems and Integration Methods 107 § 1. Brief Survey of Various Approaches to the Integrability of Hamiltonian Systems 107 1.1. Quadratures 107 1.2. Complete Integrability 109 1.3. Normal Forms 111 § 2. Completely Integrable Systems 114 2.1. Action-Angle Variables 114 2.2. Noncommutative Sets of First Integrals 118 2.3. Examples of Completely Integrable Systems 119 § 3. Some Methods of Integrating Hamiltonian Systems 124 3.1. Method of Separation o		2.2. Lowering the Order (the Hamiltonian Aspect)	. 91
Problem 96 § 3. Relative Equilibria and Bifurcations of Invariant Manifolds 101 3.1. Relative Equilibria and the Amended Potential 101 3.2. Invariant Manifolds, Regions of Possible Motions, and Bifurcation Sets 102 3.3. The Bifurcation Set in the Planar Three-Body Problem 104 3.4. Bifurcation Sets and Invariant Manifolds in the Motion of a Heavy Rigid Body with a Fixed Point 105 Chapter 4. Integrable Systems and Integration Methods 107 § 1. Brief Survey of Various Approaches to the Integrability of Hamiltonian Systems 107 1.2. Complete Integrability 109 1.3. Normal Forms 111 § 2. Completely Integrable Systems 114 2.1. Action-Angle Variables 114 2.2. Noncommutative Sets of First Integrals 118 8.3. Method of Separation of Variables 124 3.1. Method of Separation of Variables 124 3.2. Method of <i>L-A</i> (Lax) Pairs 129 § 4. Nonholonomic Integrable Systems 131 4.1. Differential Equations with Invariant Measure 131 4.2. Some Solved Problems of Nonholonomic Mechanics 138 § 1. Averaging of Perturbations 138 1.1. The Averaging Prin		2.3. Examples: Free Motion of a Rigid Body and the Three-Body	v
 § 3. Relative Equilibria and Bifurcations of Invariant Manifolds 101 3.1. Relative Equilibria and the Amended Potential 101 3.2. Invariant Manifolds, Regions of Possible Motions, and Bifurcation Sets 102 3.3. The Bifurcation Set in the Planar Three-Body Problem 104 3.4. Bifurcation Sets and Invariant Manifolds in the Motion of a Heavy Rigid Body with a Fixed Point 105 Chapter 4. Integrable Systems and Integration Methods 107 § 1. Brief Survey of Various Approaches to the Integrability of Hamiltonian Systems 107 1.1. Quadratures 107 1.2. Complete Integrability 109 1.3. Normal Forms 111 § 2. Completely Integrable Systems 114 2.1. Action-Angle Variables 114 2.2. Noncommutative Sets of First Integrals 114 2.3. Examples of Completely Integrable Systems 119 § 3. Some Methods of Integrating Hamiltonian Systems 124 3.1. Method of Separation of Variables 124 3.2. Method of <i>L-A</i> (Lax) Pairs 124 4.1. Differential Equations with Invariant Measure 131 4.2. Some Solved Problems of Nonholonomic Mechanics 134 Chapter 5. Perturbation Theory for Integrable Systems 138 1.1. The Averaging Principle 138 1.2. Procedure for Eliminating Fast Variables in the Absence of Resonances 142 1.3. Procedure for Eliminating Fast Variables in the Presence of Resonances 145 1.4. Averaging in Single-Frequency Systems 146 1.5. Averaging in Systems with Constant Frequencies 153 		Problem	. 96
 3.1. Relative Equilibria and the Amended Potential	§ 3.	Relative Equilibria and Bifurcations of Invariant Manifolds	. 101
 3.2. Invariant Manifolds, Regions of Possible Motions, and Bifurcation Sets	0 - 1	3.1. Relative Equilibria and the Amended Potential	. 101
Bifurcation Sets 102 3.3. The Bifurcation Sets in the Planar Three-Body Problem 104 3.4. Bifurcation Sets and Invariant Manifolds in the Motion of a Heavy Rigid Body with a Fixed Point 105 Chapter 4. Integrable Systems and Integration Methods 107 § 1. Brief Survey of Various Approaches to the Integrability of Hamiltonian Systems 107 1.1. Quadratures 107 1.2. Complete Integrability 109 1.3. Normal Forms 111 § 2. Completely Integrable Systems 114 2.1. Action-Angle Variables 114 2.2. Noncommutative Sets of First Integrals 118 2.3. Examples of Completely Integrable Systems 124 3.1. Method of Separation of Variables 124 3.2. Method of L-A (Lax) Pairs 129 § 4. Nonholonomic Integrable Systems 131 4.1. Differential Equations with Invariant Measure 133 4.2. Some Solved Problems of Nonholonomic Mechanics 138 1.1. The Averaging Principle 138 1.2. Procedure for Eliminating Fast Variables in the Presence of Resonances 142 1.3. Procedure for Eliminating Fast Variables in the Presence of Resonances 145 1.4. Averaging in Single-Frequen		3.2. Invariant Manifolds, Regions of Possible Motions, and	
3.3. The Bifurcation Set in the Planar Three-Body Problem 104 3.4. Bifurcation Sets and Invariant Manifolds in the Motion of a Heavy Rigid Body with a Fixed Point 105 Chapter 4. Integrable Systems and Integration Methods 107 § 1. Brief Survey of Various Approaches to the Integrability of Hamiltonian Systems 107 1.1. Quadratures 107 1.2. Complete Integrability 109 1.3. Normal Forms 111 § 2. Completely Integrable Systems 114 2.1. Action-Angle Variables 114 2.2. Noncommutative Sets of First Integrals 118 2.3. Examples of Completely Integrable Systems 119 § 3. Some Methods of Integrating Hamiltonian Systems 124 3.1. Method of Separation of Variables 124 3.2. Method of <i>L-A</i> (Lax) Pairs 129 § 4. Nonholonomic Integrable Systems 131 4.1. Differential Equations with Invariant Measure 133 4.2. Some Solved Problems of Nonholonomic Mechanics 138 § 1. Averaging of Perturbations 138 § 1. Averaging of Perturbations 138 § 1. Averaging Principle 138 § 1. Averaging of Perturbations 142 1.		Bifurcation Sets	. 102
3.4. Bifurcation Sets and Invariant Manifolds in the Motion of a Heavy Rigid Body with a Fixed Point 105 Chapter 4. Integrable Systems and Integration Methods 107 § 1. Brief Survey of Various Approaches to the Integrability of Hamiltonian Systems 107 1.1. Quadratures 107 1.2. Complete Integrability 109 1.3. Normal Forms 111 § 2. Completely Integrable Systems 114 2.1. Action-Angle Variables 114 2.2. Noncommutative Sets of First Integrals 118 2.3. Examples of Completely Integrable Systems 119 § 3. Some Methods of Integrating Hamiltonian Systems 124 3.1. Method of Separation of Variables 124 3.2. Method of L-4 (Lax) Pairs 129 § 4. Nonholonomic Integrable Systems 131 4.1. Differential Equations with Invariant Measure 131 4.2. Some Solved Problems of Nonholonomic Mechanics 138 1.1. The Averaging Principle 138 1.2. Procedure for Eliminating Fast Variables in the Absence of Resonances 142 1.3. Procedure for Eliminating Fast Variables in the Presence of Resonances 145 1.4. Averaging in Single-Frequency Systems 146 1.5. Averagin		3.3. The Bifurcation Set in the Planar Three-Body Problem	104
Heavy Rigid Body with a Fixed Point 105 Chapter 4. Integrable Systems and Integration Methods 107 § 1. Brief Survey of Various Approaches to the Integrability of 107 Hamiltonian Systems 107 1.1. Quadratures 107 1.2. Complete Integrability 109 1.3. Normal Forms 111 § 2. Completely Integrable Systems 114 2.1. Action-Angle Variables 114 2.2. Noncommutative Sets of First Integrals 118 2.3. Examples of Completely Integrable Systems 119 § 3. Some Methods of Integrating Hamiltonian Systems 124 3.1. Method of Separation of Variables 124 3.2. Method of L-4 (Lax) Pairs 129 § 4. Nonholonomic Integrable Systems 131 4.1. Differential Equations with Invariant Measure 131 4.2. Some Solved Problems of Nonholonomic Mechanics 138 1.1. The Averaging Principle 138 1.2. Procedure for Eliminating Fast Variables in the Absence of Resonances 142 1.3. Procedure for Eliminating Fast Variables in the Presence of Resonances 145 1.4. Averaging in Single-Frequency Systems 146 1.5. Averaging in Single-		3.4. Bifurcation Sets and Invariant Manifolds in the Motion of a	 1
Chapter 4. Integrable Systems and Integration Methods 107 § 1. Brief Survey of Various Approaches to the Integrability of 107 Hamiltonian Systems 107 1.1. Quadratures 107 1.2. Complete Integrability 109 1.3. Normal Forms 111 § 2. Completely Integrable Systems 114 2.1. Action-Angle Variables 114 2.2. Noncommutative Sets of First Integrals 118 2.3. Examples of Completely Integrable Systems 119 § 3. Some Methods of Integrating Hamiltonian Systems 124 3.1. Method of Separation of Variables 124 3.2. Method of <i>L-A</i> (Lax) Pairs 129 § 4. Nonholonomic Integrable Systems 131 4.1. Differential Equations with Invariant Measure 131 4.2. Some Solved Problems of Nonholonomic Mechanics 138 § 1. Averaging of Perturbations 138 1.1. The Averaging Principle 138 1.2. Procedure for Eliminating Fast Variables in the Absence of Resonances 142 1.3. Procedure for Eliminating Fast Variables in the Presence of Resonances 145 1.4. Averaging in Single-Frequency Systems 146 1.5. Averaging in Systems w		Heavy Rigid Body with a Fixed Point	105
Chapter 4. Integrable Systems and Integration Methods 107 § 1. Brief Survey of Various Approaches to the Integrability of 107 Hamiltonian Systems 107 1.1. Quadratures 107 1.2. Complete Integrability 109 1.3. Normal Forms 111 § 2. Completely Integrable Systems 114 2.1. Action-Angle Variables 114 2.2. Noncommutative Sets of First Integrals 118 2.3. Normal Forms 114 2.4. Noncommutative Sets of First Integrals 118 2.3. Examples of Completely Integrable Systems 119 § 3. Some Methods of Integrating Hamiltonian Systems 124 3.1. Method of Separation of Variables 124 3.2. Method of <i>L-A</i> (Lax) Pairs 129 § 4. Nonholonomic Integrable Systems 131 4.1. Differential Equations with Invariant Measure 131 4.2. Some Solved Problems of Nonholonomic Mechanics 138 § 1. Averaging of Perturbations 138 1.1. The Averaging Principle 138 1.2. Procedure for Eliminating Fast Variables in the Absence of Resonances 142 1.3. Procedure for Eliminating Fast Variables in the Presence of Resonances			. 100
§ 1. Brief Survey of Various Approaches to the Integrability of Hamiltonian Systems 107 1.1. Quadratures 107 1.2. Complete Integrability 109 1.3. Normal Forms 111 § 2. Completely Integrable Systems 114 2.1. Action-Angle Variables 114 2.2. Noncommutative Sets of First Integrals 118 2.3. Examples of Completely Integrable Systems 119 § 3. Some Methods of Integrating Hamiltonian Systems 124 3.1. Method of Separation of Variables 124 3.2. Method of <i>L-A</i> (Lax) Pairs 129 § 4. Nonholonomic Integrable Systems 131 4.1. Differential Equations with Invariant Measure 133 4.2. Some Solved Problems of Nonholonomic Mechanics 134 Chapter 5. Perturbation Theory for Integrable Systems 138 § 1. Averaging of Perturbations 138 1.2. Procedure for Eliminating Fast Variables in the Absence of Resonances 142 1.3. Procedure for Eliminating Fast Variables in the Presence of Resonances 145 1.4. Averaging in Single-Frequency Systems 146 1.5. Averaging in Systems with Constant Frequencies 153 <td>Ch</td> <td>anter 4 Integrable Systems and Integration Methods</td> <td>107</td>	Ch	anter 4 Integrable Systems and Integration Methods	107
 § 1. Brief Survey of Various Approaches to the Integrability of Hamiltonian Systems	0.4		107
Hamiltonian Systems 107 1.1. Quadratures 107 1.2. Complete Integrability 109 1.3. Normal Forms 111 § 2. Completely Integrable Systems 114 2.1. Action-Angle Variables 114 2.2. Noncommutative Sets of First Integrals 114 2.3. Examples of Completely Integrable Systems 119 § 3. Some Methods of Integrating Hamiltonian Systems 124 3.1. Method of Separation of Variables 124 3.2. Method of <i>L-A</i> (Lax) Pairs 129 § 4. Nonholonomic Integrable Systems 131 4.1. Differential Equations with Invariant Measure 131 4.2. Some Solved Problems of Nonholonomic Mechanics 138 1.1. The Averaging Principle 138 1.2. Procedure for Eliminating Fast Variables in the Absence of Resonances 142 1.3. Procedure for Eliminating Fast Variables in the Presence of Resonances 145 1.4. Averaging in Single-Frequency Systems 146 1.5. Averaging in Systems with Constant Frequencies 153	§1.	Brief Survey of Various Approaches to the Integrability of	
1.1. Quadratures 107 1.2. Complete Integrability 109 1.3. Normal Forms 111 § 2. Completely Integrable Systems 114 2.1. Action-Angle Variables 114 2.2. Noncommutative Sets of First Integrals 114 2.3. Examples of Completely Integrable Systems 119 § 3. Some Methods of Integrating Hamiltonian Systems 124 3.1. Method of Separation of Variables 124 3.2. Method of <i>L-A</i> (Lax) Pairs 129 § 4. Nonholonomic Integrable Systems 131 4.1. Differential Equations with Invariant Measure 131 4.2. Some Solved Problems of Nonholonomic Mechanics 138 1.1. The Averaging Principle 138 1.2. Procedure for Eliminating Fast Variables in the Absence of Resonances 142 1.3. Procedure for Eliminating Fast Variables in the Presence of Resonances 142 1.4. Averaging in Single-Frequency Systems 144 1.5. Averaging in Systems with Constant Frequencies 153		Hamiltonian Systems	. 10/
1.2. Complete Integrability 109 1.3. Normal Forms 111 § 2. Completely Integrable Systems 114 2.1. Action-Angle Variables 114 2.2. Noncommutative Sets of First Integrals 114 2.3. Examples of Completely Integrable Systems 118 2.3. Examples of Completely Integrable Systems 119 § 3. Some Methods of Integrating Hamiltonian Systems 124 3.1. Method of Separation of Variables 124 3.2. Method of L-A (Lax) Pairs 129 § 4. Nonholonomic Integrable Systems 131 4.1. Differential Equations with Invariant Measure 131 4.2. Some Solved Problems of Nonholonomic Mechanics 134 Chapter 5. Perturbation Theory for Integrable Systems 138 § 1. Averaging of Perturbations 138 1.1. The Averaging Principle 138 1.2. Procedure for Eliminating Fast Variables in the Absence of Resonances 142 1.3. Procedure for Eliminating Fast Variables in the Presence of Resonances 145 1.4. Averaging in Single-Frequency Systems 146 1.5. Averaging in Systems with Constant Frequencies 153		1.1. Quadratures	10/
1.3. Normal Forms 111 § 2. Completely Integrable Systems 114 2.1. Action-Angle Variables 114 2.2. Noncommutative Sets of First Integrals 114 2.3. Examples of Completely Integrable Systems 119 § 3. Some Methods of Integrating Hamiltonian Systems 124 3.1. Method of Separation of Variables 124 3.2. Method of L-A (Lax) Pairs 129 § 4. Nonholonomic Integrable Systems 131 4.1. Differential Equations with Invariant Measure 131 4.2. Some Solved Problems of Nonholonomic Mechanics 134 Chapter 5. Perturbation Theory for Integrable Systems 138 § 1. Averaging of Perturbations 138 1.2. Procedure for Eliminating Fast Variables in the Absence of Resonances 142 1.3. Procedure for Eliminating Fast Variables in the Presence of Resonances 145 1.4. Averaging in Single-Frequency Systems 146 1.5. Averaging in Systems with Constant Frequencies 153		1.2. Complete Integrability	109
 § 2. Completely Integrable Systems		1.3. Normal Forms	. 111
2.1. Action-Angle Variables 114 2.2. Noncommutative Sets of First Integrals 118 2.3. Examples of Completely Integrable Systems 119 § 3. Some Methods of Integrating Hamiltonian Systems 124 3.1. Method of Separation of Variables 124 3.2. Method of L-A (Lax) Pairs 129 § 4. Nonholonomic Integrable Systems 131 4.1. Differential Equations with Invariant Measure 131 4.2. Some Solved Problems of Nonholonomic Mechanics 134 Chapter 5. Perturbation Theory for Integrable Systems 138 § 1. Averaging of Perturbations 138 1.1. The Averaging Principle 138 1.2. Procedure for Eliminating Fast Variables in the Absence of Resonances 142 1.3. Procedure for Eliminating Fast Variables in the Presence of Resonances 145 1.4. Averaging in Single-Frequency Systems 146 1.5. Averaging in Systems with Constant Frequencies 153	§2.	Completely Integrable Systems	. 114
 2.2. Noncommutative Sets of First Integrals		2.1. Action-Angle Variables	114
 2.3. Examples of Completely Integrable Systems		2.2. Noncommutative Sets of First Integrals	118
 § 3. Some Methods of Integrating Hamiltonian Systems		2.3. Examples of Completely Integrable Systems	119
 3.1. Method of Separation of Variables	§ 3.	Some Methods of Integrating Hamiltonian Systems	124
 3.2. Method of L-A (Lax) Pairs		3.1. Method of Separation of Variables	124
 § 4. Nonholonomic Integrable Systems		3.2. Method of L - A (Lax) Pairs	129
 4.1. Differential Equations with Invariant Measure	§4.	Nonholonomic Integrable Systems	131
 4.2. Some Solved Problems of Nonholonomic Mechanics		4.1. Differential Equations with Invariant Measure	131
 Chapter 5. Perturbation Theory for Integrable Systems		4.2. Some Solved Problems of Nonholonomic Mechanics	134
 Chapter 5. Perturbation Theory for Integrable Systems	~1		
 § 1. Averaging of Perturbations	Cha	apter 5. Perturbation Theory for Integrable Systems	138
 1.1. The Averaging Principle	§1.	Averaging of Perturbations	138
 1.2. Procedure for Eliminating Fast Variables in the Absence of Resonances		1.1. The Averaging Principle	138
Resonances		1.2. Procedure for Eliminating Fast Variables in the Absence of	f
 1.3. Procedure for Eliminating Fast Variables in the Presence of Resonances		Resonances	142
Resonances1451.4. Averaging in Single-Frequency Systems1461.5. Averaging in Systems with Constant Frequencies153		1.3. Procedure for Eliminating Fast Variables in the Presence of	f
1.4. Averaging in Single-Frequency Systems1461.5. Averaging in Systems with Constant Frequencies153		Resonances	145
1.5. Averaging in Systems with Constant Frequencies 153		1.4. Averaging in Single-Frequency Systems	146
		1.5. Averaging in Systems with Constant Frequencies	153
1.6. Averaging in Nonresonant Domains		1.6. Averaging in Nonresonant Domains	155
1.7. The Effect of a Single Resonance		1.7. The Effect of a Single Resonance	156
1.8. Averaging in Two-Frequency Systems 161		18 Averaging in Two Erectional Systems	161

	1.9. Averaging in Multi-Frequency Systems	165
§2.	Averaging in Hamiltonian Systems	167
-	2.1. Application of the Averaging Principle	167
	2.2. Procedures for Eliminating Fast Variables	175
§ 3.	The KAM Theory	182
	3.1. Unperturbed Motion. Nondegeneracy Conditions	182
	3.2. Invariant Tori of the Perturbed System	183
	3.3. Systems with Two Degrees of Freedom	186
	3.4. Diffusion of Slow Variables in Higher-Dimensional Systems,	
	and its Exponential Estimate	189
	3.5. Variants of the Theorem on Invariant Tori	191
	3.6. A Variational Principle for Invariant Tori. Cantori	194
	3.7. Applications of the KAM Theory	197
§4.	Adiabatic Invariants	200
	4.1. Adiabatic Invariance of the Action Variable in Single-	
	Frequency Systems	200
	4.2. Adiabatic Invariants of Multi-Frequency Hamiltonian Systems	205
	4.3. Procedure for Eliminating Fast Variables. Conservation Time	
	of Adiabatic Invariants	207
	4.4. Accuracy of the Conservation of Adiabatic Invariants	208
	4.5. Perpetual Conservation of Adiabatic Invariants	210
Cha	pter 6. Nonintegrable Systems	212
6 1	Neer Integrable Hemiltonian Systems	24.2
§ I.	Near-Integrable Hamiltonian Systems	212
	1.1. Follicate's Methods	213
	1.2. Creation of isolated remode solutions is an Obstruction to Integrability	215
	1 3 Applications of Poincaré's Method	213
82	Splitting of Asymptotic Surfaces	210
3 2.	21. Conditions for Splitting	221
	2.2. Splitting of Asymptotic Surfaces is an Obstruction to	
	Integrability	224
	2.3. Applications	227
§ 3.	Quasi-Random Oscillations	231
U	3.1. The Poincaré Map	232
	3.2. Symbolic Dynamics	235
	3.3. Nonexistence of Analytic First Integrals	237
§4.	Nonintegrability in the Neighborhood of an Equilibrium Position	
U U	(Siegel's Method)	238
§ 5.	Branching of Solutions and Nonexistence of Single-Valued First	
-	Integrals	241
	5.1. Branching of Solutions is an Obstruction to Integrability	241
	5.2. Monodromy Groups of Hamiltonian Systems with Single-	
	Valued First Integrals	244

Contents

§ 6.	Topological and Geometrical Obstructions to Complete	
0	Integrability of Natural Systems with Two Degrees of Freedom	248
	6.1. Topology of the Configuration Space of Integrable Systems	248
	6.2 Geometrical Obstructions to Integrability	250
		250
Cha	pter 7. Theory of Small Oscillations	251
§1.	Linearization	251
§ 2.	Normal Forms of Linear Oscillations	252
	2.1. Normal Form of Linear Natural Lagrangian Systems	252
	2.2. The Rayleigh-Fischer-Courant Theorems on the Behavior of	
	Characteristic Frequencies under an Increase in Rigidity and	
	under Imposition of Constraints	253
	2.3. Normal Forms of Quadratic Hamiltonians	253
83.	Normal Forms of Hamiltonian Systems Near Equilibria	255
3	3.1. Reduction to Normal Form	255
	3.2. Phase Portraits of Systems with Two Degrees of Freedom in	
	the Neighborhood of an Equilibrium Position under Resonance	258
	3.3. Stability of Equilibria in Systems with Two Degrees of Freedom	
	under Resonance	264
§ 4 .	Normal Forms of Hamiltonian Systems Near Closed Trajectories	266
0	4.1. Reduction to the Equilibrium of a System with Periodic	
	Coefficients	266
	4.2. Reduction of Systems with Periodic Coefficients to Normal	
	Form	267
	4.3. Phase Portraits of Systems with two Degrees of Freedom Near	
	a Closed Trajectory under Resonance	267
§ 5.	Stability of Equilibria in Conservative Fields	271
0		
Com	ments on the Bibliography	274
Daa	ammandad Baading	276
Rect		270
Bibli	iography	278
Inde	х	286

Preface

This work describes the fundamental principles, problems, and methods of classical mechanics focussing on its mathematical aspects. The authors have striven to give an exposition stressing the working apparatus of classical mechanics, rather than its physical foundations or applications. This apparatus is basically contained in Chapters 1, 3, 4 and 5.

Chapter 1 is devoted to the fundamental mathematical models which are usually employed to describe the motion of real mechanical systems. Special consideration is given to the study of motion under constraints, and also to problems concerned with the realization of constraints in dynamics.

Chapter 3 is concerned with the symmetry groups of mechanical systems and the corresponding conservation laws. Also discussed are various aspects of the theory of the reduction of order for systems with symmetry, often used in applications.

Chapter 4 contains a brief survey of various approaches to the problem of the integrability of the equations of motion, and discusses some of the most general and effective methods of integrating these equations. Various classical examples of integrated problems are outlined. The material presented in this chapter is used in Chapter 5, which is devoted to one of the most fruitful branches of mechanics – perturbation theory. The main task of perturbation theory is the investigation of problems of mechanics which are "close" to exactly integrable problems. Elements of this theory, in particular, the widely used "averaging principle", have emerged in celestial mechanics from attempts to take into account the mutual gravitational perturbations of planets in the solar system.

Chapter 6 is related to Chapters 4 and 5, and studies the theoretical possibility of integrating (in a precisely defined sense) the equations of motion. Approximate integration methods are discussed in Chapter 5: their significance is increased by the fact that integrable systems occur so rarely in reality. Also in this chapter there is a study of the *n*-body problem with special consideration given to the problem of the stability of the solar system. Some of the classical problems of celestial mechanics are treated in Chapter 2, including the integrable 2-body problem, and the classification of final motions in the 3-body problem. This chapter also contains an analysis of collisions, various aspects of regularization in the general problem of n points interacting gravitationally, and various limiting variants of this problem. Elements of the theory of oscillations are given in Chapter 7. This text is not a complete exposition of these topics and we do not give detailed proofs. Our main purpose is to acquaint the reader with classical mechanics as a whole, in both its classical and its contemporary aspects. The interested reader will find the necessary proofs, and more detailed information, in the works listed at the end of this volume.