Contents

Preface		
Acknowledgm	ents	ix
I. Group an	nd Hamiltonian Structures of Fluid Dynamics	1
§1. Sym	metry groups for a rigid body and an ideal fluid	1
§2. Lie	groups, Lie algebras, and adjoint representation	3
§3. Coa	djoint representation of a Lie group	10
3.A.	Definition of the coadjoint representation	10
3.B.	Dual of the space of plane divergence-free vector fields	11
3.C.	The Lie algebra of divergence-free vector fields and its	
	dual in arbitrary dimension	13
§4. Left	-invariant metrics and a rigid body for an arbitrary group	14
§5. App	lications to hydrodynamics	19
§6. Han	iltonian structure for the Euler equations	25
§7. Idea	l hydrodynamics on Riemannian manifolds	31
7.A.	The Euler hydrodynamic equation on manifolds	31
7.B.	Dual space to the Lie algebra of divergence-free fields	32
7.C.	Inertia operator of an <i>n</i> -dimensional fluid	36
§8. Proc	ofs of theorems about the Lie algebra of divergence-free	
field	s and its dual	39
§9. Con	servation laws in higher-dimensional hydrodynamics	42
§10. The	group setting of ideal magnetohydrodynamics	49
10.A	. Equations of magnetohydrodynamics and the	
	Kirchhoff equations	49
1 0.E	B. Magnetic extension of any Lie group	50
10.C	2. Hamiltonian formulation of the Kirchhoff and	
	magnetohydrodynamics equations	53
§11. Fini	e-dimensional approximations of the Euler equation	56
11.A	A. Approximations by vortex systems in the plane	56
11 .E	8. Nonintegrability of four or more point vortices	58
11.C	2. Hamiltonian vortex approximations in three	
	dimensions	59
11. E). Finite-dimensional approximations of diffeomorphism	
	groups	60

§12.	The Navier–Stokes equation from the group viewpoint	63
II. Торо	logy of Steady Fluid Flows	69
§ 1.	Classification of three-dimensional steady flows	69
	1.A. Stationary Euler solutions and Bernoulli functions	69
	1.B. Structural theorems	73
§2.	Variational principles for steady solutions and applications to	
	two-dimensional flows	75
	2.A. Minimization of the energy	75
	2.B. The Dirichlet problem and steady flows	78
	2.C. Relation of two variational principles	80
	2.D. Semigroup variational principle for two-dimensional	
	steady flows	81
§3.	Stability of stationary points on Lie algebras	84
§4.	Stability of planar fluid flows	88
	4.A. Stability criteria for steady flows	89
	4.B. Wandering solutions of the Euler equation	96
§5.	Linear and exponential stretching of particles and rapidly	
	oscillating perturbations	99
	5.A. The linearized and shortened Euler equations	100
	5.B. The action-angle variables	100
	5.C. Spectrum of the shortened equation	101
	5.D. The Squire medicin for shear nows 5.E. Steady flows with exponential stratching of particles	102
	5.E. Analysis of the linearized Euler equation	105
	5.C. Inconclusiveness of the stability test for space steady	105
	S.C. Inconclusiveness of the stability test for space sleady	106
86	Features of higher-dimensional steady flows	100
80.	6 A Generalized Beltrami flows	109
	6 B Structure of four-dimensional steady flows	111
	6 C Topology of the vorticity function	112
	6 D Nonexistence of smooth steady flows and sharpness of	112
	the restrictions	116
III. Topo	logical Properties of Magnetic and Vorticity Fields	119
§ 1.	Minimal energy and helicity of a frozen-in field	119
Ū	1.A. Variational problem for magnetic energy	119
	1.B. Extremal fields and their topology	120
	1.C. Helicity bounds the energy	121
	1.D. Helicity of fields on manifolds	124
§2.	Topological obstructions to energy relaxation	1 29
	2.A. Model example: Two linked flux tubes	1 29
	2.B. Energy lower bound for nontrivial linking	131
§3.	Sakharov–Zeldovich minimization problem	134

	§4.	Asym	ptotic linking number	139
		4.A.	Asymptotic linking number of a pair of trajectories	140
		4.B.	Digression on the Gauss formula	143
		4.Ç.	Another definition of the asymptotic linking number	144
		4.D.	Linking forms on manifolds	147
	§5.	Asym	ptotic crossing number	152
		5.A.	Energy minoration for generic vector fields	152
		5.B.	Asymptotic crossing number of knots and links	155
		5.C.	Conformal modulus of a torus	159
	§6.	Energ	y of a knot	160
		6.A.	Energy of a charged loop	160
		6.B.	Generalizations of the knot energy	163
	§7.	Gener	alized helicities and linking numbers	166
		7.A.	Relative helicity	166
		7.B.	Ergodic meaning of higher-dimensional helicity	
			integrals	1 68
		7.C.	Higher-order linking integrals	174
		7.D.	Calugareanu invariant and self-linking number	177
		7.E.	Holomorphic linking number	1 79
	§8.	Asym	ptotic holonomy and applications	184
		8.A.	Jones-Witten invariants for vector fields	184
		8.B.	Interpretation of Godbillon-Vey-type characteristic	
			classes	191
IV.	Diff	erentia	l Geometry of Diffeomorphism Groups	195
IV.	Diffe §1.	e rentia The L	I Geometry of Diffeomorphism Groups obachevsky plane and preliminaries in differential	195
IV.	Diffe §1.	erentia The L geome	I Geometry of Diffeomorphism Groups obachevsky plane and preliminaries in differential erry	195 196
IV.	Diffe §1.	The L geome 1.A.	I Geometry of Diffeomorphism Groups obachevsky plane and preliminaries in differential etry The Lobachevsky plane of affine transformations	195 196 196
IV.	Diffe §1.	The L geome 1.A. 1.B.	I Geometry of Diffeomorphism Groups obachevsky plane and preliminaries in differential etry The Lobachevsky plane of affine transformations Curvature and parallel translation	195 196 196 197
IV.	Diffe §1.	The L geome 1.A. 1.B. 1.C.	I Geometry of Diffeomorphism Groups obachevsky plane and preliminaries in differential etry The Lobachevsky plane of affine transformations Curvature and parallel translation Behavior of geodesics on curved manifolds	195 196 196 197 201
IV.	Diffe §1.	The L geome 1.A. 1.B. 1.C. 1.D.	I Geometry of Diffeomorphism Groups obachevsky plane and preliminaries in differential erry The Lobachevsky plane of affine transformations Curvature and parallel translation Behavior of geodesics on curved manifolds Relation of the covariant and Lie derivatives	195 196 196 197 201 202
IV.	Diff §1. §2.	The L geome 1.A. 1.B. 1.C. 1.D. Sectio	I Geometry of Diffeomorphism Groups obachevsky plane and preliminaries in differential erry The Lobachevsky plane of affine transformations Curvature and parallel translation Behavior of geodesics on curved manifolds Relation of the covariant and Lie derivatives nal curvatures of Lie groups equipped with a one-sided	195 196 196 197 201 202
IV.	Diff §1. §2.	The L geome 1.A. 1.B. 1.C. 1.D. Sectio invaria	I Geometry of Diffeomorphism Groups obachevsky plane and preliminaries in differential etry The Lobachevsky plane of affine transformations Curvature and parallel translation Behavior of geodesics on curved manifolds Relation of the covariant and Lie derivatives nal curvatures of Lie groups equipped with a one-sided ant metric	195 196 196 197 201 202 202
IV.	Diffe §1. §2. §3.	The L geome 1.A. 1.B. 1.C. 1.D. Sectio invaria Riema	I Geometry of Diffeomorphism Groups obachevsky plane and preliminaries in differential etry The Lobachevsky plane of affine transformations Curvature and parallel translation Behavior of geodesics on curved manifolds Relation of the covariant and Lie derivatives nal curvatures of Lie groups equipped with a one-sided ant metric unnian geometry of the group of area-preserving	195 196 196 197 201 202 204
IV.	Diffa §1. §2. §3.	The L geome 1.A. 1.B. 1.C. 1.D. Sectio invaria Riema diffeo	I Geometry of Diffeomorphism Groups obachevsky plane and preliminaries in differential etry The Lobachevsky plane of affine transformations Curvature and parallel translation Behavior of geodesics on curved manifolds Relation of the covariant and Lie derivatives nal curvatures of Lie groups equipped with a one-sided ant metric unnian geometry of the group of area-preserving morphisms of the two-torus	195 196 197 201 202 204 209
IV.	Diffe §1. §2. §3.	The L geome 1.A. 1.B. 1.C. 1.D. Section invaria Riema diffeon 3.A.	I Geometry of Diffeomorphism Groups obachevsky plane and preliminaries in differential erry The Lobachevsky plane of affine transformations Curvature and parallel translation Behavior of geodesics on curved manifolds Relation of the covariant and Lie derivatives nal curvatures of Lie groups equipped with a one-sided ant metric mnian geometry of the group of area-preserving morphisms of the two-torus The curvature tensor for the group of torus	195 196 197 201 202 204 209
IV.	Diffe §1. §2. §3.	The L geome 1.A. 1.B. 1.C. 1.D. Sectio invaria Riema diffeo 3.A.	I Geometry of Diffeomorphism Groups obachevsky plane and preliminaries in differential erry The Lobachevsky plane of affine transformations Curvature and parallel translation Behavior of geodesics on curved manifolds Relation of the covariant and Lie derivatives nal curvatures of Lie groups equipped with a one-sided ant metric unnian geometry of the group of area-preserving morphisms of the two-torus The curvature tensor for the group of torus diffeomorphisms	 195 196 197 201 202 204 209 209
IV.	Diffe §1. §2. §3.	The L geome 1.A. 1.B. 1.C. 1.D. Sectio invaria Riema diffeo 3.A. 3.B.	I Geometry of Diffeomorphism Groups obachevsky plane and preliminaries in differential erry The Lobachevsky plane of affine transformations Curvature and parallel translation Behavior of geodesics on curved manifolds Relation of the covariant and Lie derivatives nal curvatures of Lie groups equipped with a one-sided ant metric unnian geometry of the group of area-preserving morphisms of the two-torus The curvature tensor for the group of torus diffeomorphisms Curvature calculations	195 196 197 201 202 204 209 209 212
IV.	Diffe §1. §2. §3.	The L geome 1.A. 1.B. 1.C. 1.D. Sectio invaria Riema diffeo 3.A. 3.B. Diffeo	I Geometry of Diffeomorphism Groups obachevsky plane and preliminaries in differential erry The Lobachevsky plane of affine transformations Curvature and parallel translation Behavior of geodesics on curved manifolds Relation of the covariant and Lie derivatives nal curvatures of Lie groups equipped with a one-sided ant metric unnian geometry of the group of area-preserving morphisms of the two-torus The curvature tensor for the group of torus diffeomorphisms Curvature calculations morphism groups and unreliable forecasts	195 196 197 201 202 204 209 209 212 214
IV.	Diffe §1. §2. §3. §4.	The L geome 1.A. 1.B. 1.C. 1.D. Section invaria Riema diffeo 3.A. 3.B. Diffeo 4.A.	I Geometry of Diffeomorphism Groups obachevsky plane and preliminaries in differential erry The Lobachevsky plane of affine transformations Curvature and parallel translation Behavior of geodesics on curved manifolds Relation of the covariant and Lie derivatives nal curvatures of Lie groups equipped with a one-sided ant metric unnian geometry of the group of area-preserving morphisms of the two-torus The curvature tensor for the group of torus diffeomorphisms Curvature calculations morphism groups and unreliable forecasts Curvatures of various diffeomorphism groups	195 196 197 201 202 204 209 219 212 214 214
IV.	Diffe §1. §2. §3. §4.	The L geome 1.A. 1.B. 1.C. 1.D. Sectio invaria Riema diffeo 3.A. 3.B. Diffeo 4.A. 4.B.	I Geometry of Diffeomorphism Groups obachevsky plane and preliminaries in differential erry The Lobachevsky plane of affine transformations Curvature and parallel translation Behavior of geodesics on curved manifolds Relation of the covariant and Lie derivatives nal curvatures of Lie groups equipped with a one-sided ant metric unnian geometry of the group of area-preserving morphisms of the two-torus The curvature tensor for the group of torus diffeomorphisms Curvature calculations morphism groups and unreliable forecasts Curvatures of various diffeomorphism groups Unreliability of long-term weather predictions	195 196 197 201 202 204 209 212 214 214 214 218
IV.	Diffe §1. §2. §3. §4.	rentia The L geome 1.A. 1.B. 1.C. 1.D. Sectio invaria Riema diffeo 3.A. 3.B. Diffeo 4.A. 4.B. Exteri	I Geometry of Diffeomorphism Groups obachevsky plane and preliminaries in differential etry The Lobachevsky plane of affine transformations Curvature and parallel translation Behavior of geodesics on curved manifolds Relation of the covariant and Lie derivatives nal curvatures of Lie groups equipped with a one-sided ant metric unnian geometry of the group of area-preserving morphisms of the two-torus The curvature tensor for the group of torus diffeomorphisms Curvature calculations morphism groups and unreliable forecasts Curvatures of various diffeomorphism groups Unreliability of long-term weather predictions or geometry of the group of volume-preserving	195 196 197 201 202 204 209 212 214 214 214 218
IV.	Diffe §1. §2. §3. §4. §5.	rentia The L geome 1.A. 1.B. 1.C. 1.D. Sectio invaria Riema diffeo 3.A. 3.B. Diffeo 4.A. 4.B. Exteri diffeo	I Geometry of Diffeomorphism Groups obachevsky plane and preliminaries in differential erry The Lobachevsky plane of affine transformations Curvature and parallel translation Behavior of geodesics on curved manifolds Relation of the covariant and Lie derivatives nal curvatures of Lie groups equipped with a one-sided ant metric unnian geometry of the group of area-preserving morphisms of the two-torus The curvature tensor for the group of torus diffeomorphisms Curvature calculations morphism groups and unreliable forecasts Curvatures of various diffeomorphism groups Unreliability of long-term weather predictions or geometry of the group of volume-preserving morphisms	195 196 197 201 202 204 209 212 214 214 214 218

	§7.	Getting around the finiteness of the diameter of the group of	
		volume-preserving diffeomorphisms	225
		7.A. Interplay between the internal and external geometry	
		of the diffeomorphism group	226
		7.B. Diameter of the diffeomorphism groups	227
		7.C. Comparison of the metrics and completion of the	
		group of diffeomorphisms	228
		7.D. The absence of the shortest path	230
		7.E. Discrete flows	234
		7.F. Outline of the proofs	235
		7.G. Generalized flows	236
		7.H. Approximation of fluid flows by generalized ones	238
		7.I. Existence of cut and conjugate points on	
		diffeomorphism groups	240
	§8.	Infinite diameter of the group of Hamiltonian diffeomorphisms	
		and symplecto-hydrodynamics	242
		8.A. Right-invariant metrics on symplectomorphisms	243
		8.B. Calabi invariant	246
		8.C. Bi-invariant metrics and pseudometrics on the group	
		of Hamiltonian diffeomorphisms	252
		8.D. Bi-invariant indefinite metric and action functional on	
		the group of volume-preserving diffeomorphisms of a	
		three-fold	255
V.	Kine	ematic Fast Dynamo Problems	259
	§1.	Dynamo and particle stretching	259
		1.A. Fast and slow kinematic dynamos	259
		1.B. Nondissipative dynamos on arbitrary manifolds	262
	§2.	Discrete dynamos in two dimensions	264
		2.A. Dynamo from the cat map on a torus	264
		2.B. Horseshoes and multiple foldings in dynamo	
		constructions	267
		2.C. Dissipative dynamos on surfaces	271
		2.D. Asymptotic Lefschetz number	273
	§3.	Main antidynamo theorems	273
		3.A. Cowling's and Zeldovich's theorems	273
		3.B. Antidynamo theorems for tensor densities	274
		3.C. Digression on the Fokker–Planck equation	277
		3.D. Proofs of the antidynamo theorems	281
		3.E. Discrete versions of antidynamo theorems	284
	§4 .	Three-dimensional dynamo models	285

§4. Three-dimensional dynamo models

4.A. "Rope dynamo" mechanism4.B. Numerical evidence of the dynamo effect 285 286

	4.C.	A dissipative dynamo model on a three-dimensional	200
	4.5	Riemannian manifold	288
	4.D.	Geodesic nows and differential operations on surfaces	202
	4	of constant negative curvature	293
0.5	4.E.	Energy balance and singularities of the Euler equation	298
82.	Dynai	no exponents in terms of topological entropy	299
	5.A.	lopological entropy of dynamical systems	299
	5.B.	Bounds for the exponents in nondissipative dynamo models	300
	5.C.	Upper bounds for dissipative L^1 -dynamos	301
VI. Dyna	amical	Systems with Hydrodynamical Background	303
§ 1.	The K	orteweg-de Vries equation as an Euler equation	303
Ū	1.A.	Virasoro algebra	303
	1.B.	The translation argument principle and integrability of	
		the high-dimensional rigid body	307
	1.C.	Integrability of the KdV equation	312
	1.D.	Digression on Lie algebra cohomology and the	
		Gelfand-Fuchs cocycle	315
§2.	Equat	ions of gas dynamics and compressible fluids	318
Ū	2.A.	Barotropic fluids and gas dynamics	318
	2.B.	Other conservative fluid systems	322
	2.C.	Infinite conductivity equation	324
§3.	Kähle	r geometry and dynamical systems on the space of	
•	knots		326
	3.A.	Geometric structures on the set of embedded curves	326
	3.B.	Filament, nonlinear Schrödinger, and Heisenberg	
		chain equations	331
	3.C.	Loop groups and the general Landau–Lifschitz	
		equation	333
§4 .	Sobol	ev's equation	335
§5.	Ellipti	c coordinates from the hydrodynamical viewpoint	340
-	5.A.	Charges on quadrics in three dimensions	340
	5.B.	Charges on higher-dimensional quadrics	342
Reference	s		345

369