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Preface to the Springer Edition 

This printing is unchanged, though the opportunity has been taken to 
correct one or two misdemeanours. In particular Problems 2.l3, 3.13 and 
3.19 are now correct1y stated, and Tietze has regained his final "e". My thanks 
go to Professor P. R. Halmos and to Springer-Verlag for the privilege of 
appearing in this series. 

M.A.A. 
Durham, J anuary 1983. 
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Preface 

This is a topology book for undergraduates, and in writing it I have had two 
aims in mind. Firstly, to make sure the student sees a variety of different tech­
niques and applications involving point set, geometric, and algebraic topology, 
without delving too deeply irito any particular area. Secondly, to develop the 
reader's geometrical insight; topology is after all a branch of geometry. 

The prerequisites for reading the book are few, a sound first course in real 
analysis (as usual !), together with a knowledge of elementary group theory and 
linear algebra. A reasonable degree of 'mathematical maturity' is much more 
important than any previous knowledge of topology. 

The layout is as follows. There are ten chapters, the first of which is a short 
essay intended as motivation. Each of the other chapters is devoted to a single 
important topic, so that identification spaces, the fundamental group, the idea of 
a triangulation, surfaces, simplicial homology, knots and covering spaces, all 
have a chapter to themselves. 

Some motivation is surely necessary. A topology book at this level which 
beg ins with a set ofaxioms for a topological space, as if these were an integral 
part of nature, is in my opinion doomed to failure. On the other hand, topology 
should not be presented as a collection of party tricks (colouring knots and 
maps, joining houses to public utilities, or watching a fly es cape from a Klein 
bottle). These things all have their place, but they must be shown to fit into a 
unified mathematical theory, and not remain dead ends in themselves. For this 
reason, knots appear at the end of the book, and not at the beginning. It is not 
the knots which are so interesting, but rather the variety of techniques needed 
to deal with them. 

Chapter 1 begins with Euler's theorem for polyhedra, and the theme of the 
book is the search for topological invariants of spaces, together with techniques 
for calculating them. Topology is complicated by the fact that something which 
is, by its very nature, topologically invariant is usually hard to calculate, and 
vice versa the invariance of a simple number like the Euler characteristic can 
involve a great deal of work. 

The balance of material was influenced by the maxim that a theory and its 
payoff in terms of applications should, wherever possible, be given equal weight. 
For example, since homology theory is a good deal oftrouble to set up (a whole 
chapter), it must be shown to be worth the effort (a whole chapter of applica­
tions). Moving away from a topic is always difficult, and the temptation to 
incIude more and more is hard to resist. But to produce a book of reasonable 
length some topics just have to go; I mention particularly in this respect the 
omiSSion of any systematic method for calculating homology groups. In 
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PREFACE 

formulating definitions, and choosing proofs, I have not always taken the 
shortest path. Very often the version of adefinition or result which is most 
convenient to work with, is not at all natural at first sight, and this is above all 
else a book for beginners. 

Most of the material can be covered in a one-year course at third-year 
(English) undergraduate level. But there is plenty of scope for shorter courses 
involving a selection of topics, and much of the first half of the book can be 
taught to second-year students. Problems are inc1uded at the end of just about 
every section, and a short bibliography is provided with suggestions for parallel 
reading and as to where to go next. 

The material presented here is all basic and has for the most part appeared 
elsewhere. IfI have made any contribution it is one of selection and presentation. 

Two topics deserve special mention. I first learned about the Alexander 
polynomial from J. F. P. Hudson, and it was E. C. Zeeman who showed me 
how to do surgery on surfaces. To both ofthem, and particularly to Christopher 
Zeeman for his patience in teaching me topology, I offer my best thanks. 

I would also like to thank R. S. Roberts and L. M. Woodward for many 
useful conversations, Mrs J. Gibson for her speed and skill in producing the 
manuscript, and Cambridge University Press for permission to reproduce the 
quotation from Hardy's 'A Mathematician's Apology' which appears at the 
beginning ofChapter 1. Finally, a special word ofthanks to my wifeAnne Marie 
for her constant encouragement. 

M.A.A. 
Durham, July 1978. 
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