Frank C. Hoppensteadt

Analysis and Simulation of Chaotic Systems

With 74 illustrations

Springer Science+Business Media, LLC

Frank C. Hoppensteadt College of Natural Sciences Michigan State University East Lansing, MI 48824-1115 USA

Editors

F. John	J.E. Marsden
Courant Institute of	Department of
Mathematical Sciences	Mathematics
New York University	University of California
New York, NY 10012	Berkeley, CA 94720
USA	USA

L. Sirovich Division of Applied Mathematics Brown University Providence, RI 02912 USA

Library of Congress Cataloging-in-Publication Data Hoppensteadt, F.C. Analysis and simulation of chaotic systems / Frank C. Hoppensteadt. p. cm.—(Applied mathematical sciences; 94) Includes bibliographical references and index. ISBN 978-1-4757-2277-2 ISBN 978-1-4757-2275-8 (eBook) DOI 10.1007/978-1-4757-2275-8 1. Chaotic behavior in systems. I. Title. II. Series: Applied mathematical sciences (Springer-Verlag New York Inc.); v. 94.

QA1.A647 vol. 94 [Q175.5.C45] 510 s—dc20 [003'.7]

92-33590

Printed on acid-free paper.

© 1993 Springer Science+Business Media New York Originally published by Springer-Verlag New York, Inc. in 1993

Softcover reprint of the hardcover 1st edition 1993

All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher Springer Science+Business Media, LLC,

except for brief excerpts in connection with reviews or scholarly

analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.

The use of general descriptive names, trade names, trademarks, etc., in this publication, even if the former are not especially identified, is not to be taken as a sign that such names, as understood by the Trade Marks and Merchandise Marks Act, may accordingly be used freely by anyone.

Production managed by Karen Phillips; manufacturing supervised by Vincent Scelta. Typeset by Asco Trade Typesetting Ltd., Hong Kong.

987654321

ISBN 978-1-4757-2277-2

Contents

Acknowledgments Introduction	
PART I AN INTRODUCTION TO NONLINEAR SYSTEMS	
Chapter 1 Oscillations of Linear Systems	3
1.1 Examples	3
1.2 Time-Invariant Linear Systems	7
1.3 Forced Linear Systems with Constant Coefficients	12
1.4 Linear Systems with Periodic Coefficients	13
1.5 Fourier Methods	19
1.6 Linear Systems with Variable Coefficients: Variation of	
Constants Formula	24
1.7 Exercises	25
Chapter 2 Free Oscillations	27
2.1 Systems of Two Equations	27
2.2 Angular Phase Equations	35
2.3 Conservative Systems	42
2.4 Dissipative Systems	56
2.5 Stroboscopic Methods	64
2.6 Oscillations of Equations with a Time Delay	78
2.7 Exercises	83
Chapter 3 Stability of Nonlinear Systems	89
3.1 Desirable Stability Properties of Nonlinear Systems	89
3.2 Linear Stability Theorem	91
3.3 Liapunov's Stability Theory	96
2.5 Empirity i bluomity intoly	20

3.5 (3.6 <i>J</i>	Stability under Persistent Disturbances Orbital Stability of Free Oscillations Angular Phase Stability Exercises	103 105 111 114
Chaj	pter 4 Algebraic and Topological Aspects of Nonlinear Oscillations	117
4.2 \$ 4.3 1 4.4 1	Implicit Function Theorems Solving Some Bifurcation Equations Examples of Bifurcation Equations Fixed-Point Theorems Exercises	117 125 127 129 135
PAR	RT II PERTURBATION METHODS	
Chaj	pter 5 Regular Perturbation Methods	139
5.2 I 5.3 I	Perturbation Expansions Regular Perturbations of Initial-Value Problems Modified Perturbation Methods Exercises	141 146 151 155
Chaj	pter 6 Forced Oscillations	157
6.1 I 6.2 I 6.3 I	Resonance Duffing's Equation Boundaries of Basins of Attraction Exercises	157 168 181 188
Chap	pter 7 Methods of Averaging	189
7.2 I 7.3 A 7.4 A 7.5 A 7.6 H 7.7 C	Averaging Nonlinear Systems Highly Oscillatory Linear Systems Averaging Rapidly Oscillating Difference Equations Almost Harmonic Systems Angular Phase Equations Homogenization Computational Aspects of Averaging Exercises	193 198 201 207 216 227 229 232

Contents	ix

Chapter 8 Quasistatic-State Methods		236
8.1	Some Geometrical Aspects of Singular Perturbation	
	Problems	241
8.2	Example: Quasistatic-State Analysis of a Linear Problem	244
8.3	Quasistatic-State Approximation for Nonlinear	
	Initial-Value Problems	251
8.4	Singular Perturbations of Oscillations	259
8.5	Boundary-Value Problems	269
8.6	Nonlinear Stability Analysis near Bifurcations	272
8.7	Explosion Mode Analysis of Rapid Chemical Reactions	276
8.8	Computational Schemes Based on QSSA	280
8.9	Exercises	282
Sup	oplementary Exercises	288
Ref	erences	290
Ind	ex	298