Oscar Zariski

Algebraic Surfaces

Reprint of the 1971 Edition

Oscar Zariski

Originally published as Vol. 61 of the Ergebnisse der Mathematik und ihrer Grenzgebiete, 2nd sequence

Mathematics Subject Classification (1991): Primary 14JXX, 14CXX, 14EXX Secondary 32–XX

ISBN-13: 978-3-540-58658-6 e-ISBN-13: 978-3-642-61991-5 DOI: 10.1007/978-3-642-61991-5

Photograph by kind permission of George Bergman

CIP data applied for

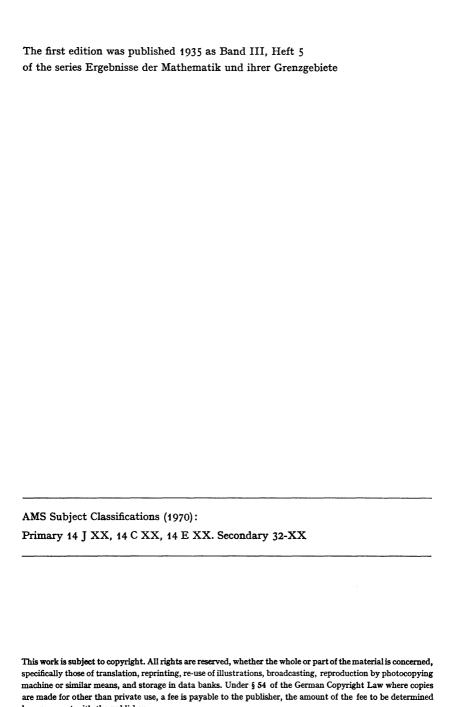
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustration, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provision of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are liable for prosecution under the German Copyright Law.

© Springer-Verlag Berlin Heidelberg 1995

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

SPIN 10485286 41/3140 - 543210-Printed on acid-free paper

Oscar Zariski


Algebraic Surfaces

Second Supplemented Edition

With Appendices by S. S. Abhyankar, J. Lipman, and D. Mumford

Springer-Verlag Berlin Heidelberg New York 1971

by agreement with the publisher.

© by Springer-Verlag Berlin Heidelberg 1935, 1971. Library of Congress Catalog Card Number 70-148144.

Printing and binding: Brühlsche Universitätsdruckerei, Gießen.

Table of Contents

Chapter I. Theory and Reduction of Singularities	1
1. Algebraic varieties and birational transformations	1
2. Singularities of plane algebraic curves	5
3. Singularities of space algebraic curves	10
4. Topological classification of singularities	12
5. Singularities of algebraic surfaces	13
6. The reduction of singularities of an algebraic surface	17
Chapter II. Linear Systems of Curves	24
1. Definitions and general properties	24
2. On the conditions imposed by infinitely near base points	27
3. Complete linear systems	29
4. Addition and subtraction of linear systems	31
5. The virtual characters of an arbitrary linear system	34
6. Exceptional curves	36
7. Invariance of the virtual characters	41
8. Virtual characteristic series. Virtual curves	43
Appendix to Chapter II by Joseph Lipman	45
Chapter III. Adjoint Systems and the Theory of Invariants	51
1. Complete linear systems of plane curves	51
2. Complete linear systems of surfaces in S_3	51
3. Subadjoint surfaces	53
4. Subadjoint systems of a given linear system	55
5. The distributive property of subadjunction	58
6. Adjoint systems	60
7. The residue theorem in its projective form	66
8. The canonical system	66
9. The pluricanonical systems	70
Appendix to Chapter III by David Mumford	71
Chapter IV. The Arithmetic Genus and the Generalized Theorem of RIEMANN-Roch	75
	<i>7</i> 5
1. The arithmetic genus p_a	<i>7</i> 5
2. The theorem of RIEMANN-ROCH on algebraic surfaces	77

3. The deficiency of the characteristic series of a complete linear	
system	80
4. The elimination of exceptional curves and the characterization	
of ruled surfaces	83
Appendix to Chapter IV by David Mumford	88
Appendix to Chapter IV by DAVID Momford	00
Chapter V. Continuous Non-linear Systems	92
1. Definitions and general properties	92
2. Complete continuous systems and algebraic equivalence	95
3. The completeness of the characteristic series of a complete	95
	98
continuous system	-
4. The variety of Picard	
5. Equivalence criteria	
6. The theory of the base and the number ϱ of Picard	
7. The division group and the invariant σ of Severi	
8. On the moduli of algebraic surfaces	113
Appendix to Chapter V by David Mumford	118
Chapter VI. Topological Properties of Algebraic Surfaces	129
• • •	
1. Terminology and notations	120
3. Algebraic cycles on F and their intersections	129
4. The representation of F upon a multiple plane	
5. The deformation of a variable plane section of F	
6. The vanishing cycles δ_i and the invariant cycles	
7. The fundamental homologies for the 1-cycles on F	
8. The reduction of F to a cell	
9. The three-dimensional cycles	
10. The two-dimensional cycles	139
11. The group of torsion	
12. Homologies between algebraic cycles and algebraic equivalence.	
The invariant ϱ_0	
13. The topological theory of algebraic correspondences	143
Appendix to Chapter VI by DAVID MUMFORD	147
Chapter VII. Simple and Double Integrals on an Algebraic Surface	156
1. Classification of integrals	
2. Simple integrals of the second kind	157
3. On the number of independent simple integrals of the first	
and of the second kind attached to a surface of irregularity q .	
The fundamental theorem	
4. The normal functions of Poincaré	
5 The existence theorem of I RESCHETZ-POINCARÉ	169