William Fulton

Algebraic Topology A First Course

With 137 Illustrations

William Fulton Mathematics Department University of Chicago Chicago, IL 60637 USA

Editorial Board

S. Axler Mathematics Department San Francisco State University San Francisco, CA 94132 USA F.W. Gehring Mathematics Department East Hall University of Michigan Ann Arbor, MI 48109 USA K.A. Ribet Mathematics Department University of California at Berkeley Berkeley, CA 94720-3840 USA

Mathematics Subject Classifications (1991): 55-01

Library of Congress Cataloging-in-Publication Data Fulton, William, 1939– Algebraic topology/William Fulton. p. cm. — (Graduate texts in mathematics) Includes bibliographical references and index. ISBN-13: 978-0-387-94327-5 1. Algebraic topology. I. Title. II. Series. QA612.F85 1995 514´.2—dc20 94-21786 ISBN-13: 978-0-387-94327-5 e-ISBN: 978-1-4612-4180-5

DOI: 10.1007/978-1-4612-4180-5

© 1995 Springer Science+Business Media, Inc.

All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, Inc., 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now know or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks and similar terms, even if the are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

(EB)

98765

springeronline.com

Contents

PART I CALCULUS IN THE PLANE

Chapter 1	
Path Integrals	3
1a. Differential Forms and Path Integrals	3
1b. When Are Path Integrals Independent of Path?	7
1c. A Criterion for Exactness	10
Chapter 2	
Angles and Deformations	17
2a. Angle Functions and Winding Numbers	17
2b. Reparametrizing and Deforming Paths	23
2c. Vector Fields and Fluid Flow	27

PART II WINDING NUMBERS

Chapter 3

The Winding Number	35	
3a.	Definition of the Winding Number	35
3b.	Homotopy and Reparametrization	38
3c.	Varying the Point	42
3d.	Degrees and Local Degrees	43

vii

Chapter 4

CHAFTER 4	
Applications of Winding Numbers	48
4a. The Fundamental Theorem of Algebra	48
4b. Fixed Points and Retractions	49
4c. Antipodes	53
4d. Sandwiches	56

PART III COHOMOLOGY AND HOMOLOGY, I

Chapter 5

De Rham Cohomology and the Jordan Curve Theorem	63
5a. Definitions of the De Rham Groups	63
5b. The Coboundary Map	65
5c. The Jordan Curve Theorem	68
5d. Applications and Variations	72

CHAPTER 6

Homology	78
6a. Chains, Cycles, and H_0U	78
6b. Boundaries, H_1U , and Winding Numbers	82
6c. Chains on Grids	85
6d. Maps and Homology	89
6e. The First Homology Group for General Spaces	91

PART IV VECTOR FIELDS

Chapter 7

97	
97	
101	
102	

CHAPTER 8106Vector Fields on Surfaces1068a. Vector Fields on a Torus and Other Surfaces1068b. The Euler Characteristic113

PART V COHOMOLOGY AND HOMOLOGY, II

Chapter 9	
Holes and Integrals	123
9a. Multiply Connected Regions	123

xiv

Contents	xv
9b. Integration over Continuous Paths and Chains	127
9c. Periods of Integrals	130
9d. Complex Integration	131
Chapter 10	
Mayer-Vietoris	137
10a. The Boundary Map	137
10b. Mayer-Vietoris for Homology	140

10c. Variations and Applications14410d. Mayer-Vietoris for Cohomology147

PART VI COVERING SPACES AND FUNDAMENTAL GROUPS, I

Chapter 11	
Covering Spaces	153
11a. Definitions	153
11b. Lifting Paths and Homotopies	156
11c. G-Coverings	158
11d. Covering Transformations	163

Chapter 12

The	Fundamental Group	165
12a.	Definitions and Basic Properties	165
12b.	Homotopy	170
12c.	Fundamental Group and Homology	173

PART VII

COVERING SPACES AND FUNDAMENTAL GROUPS, II

Chapter 13

The Fundamental Group and Covering Spaces	179
13a. Fundamental Group and Coverings	179
13b. Automorphisms of Coverings	182
13c. The Universal Covering	186
13d. Coverings and Subgroups of the Fundamental Group	189

Chapter 14

The	Van Kampen Theorem	193
14a.	G-Coverings from the Universal Covering	193
14b.	Patching Coverings Together	196
14c.	The Van Kampen Theorem	197
14d.	Applications: Graphs and Free Groups	201

Contents

PART VIII COHOMOLOGY AND HOMOLOGY, III

Chapter 15 Cohomology	207
Cohomology	207
15a. Patching Coverings and Čech Cohomology	207
15b. Čech Cohomology and Homology	210
15c. De Rham Cohomology and Homology	213
15d. Proof of Mayer-Vietoris for De Rham Cohomology	217
CHAPTER 16 Variations	219
16a. The Orientation Covering	219
16b. Coverings from 1-Forms	220
16c. Another Cohomology Group	222
16d. G-Sets and Coverings	225
16e. Coverings and Group Homomorphisms	227
16f. G-Coverings and Cocycles	228

PART IX TOPOLOGY OF SURFACES

Chapter 17

The Topology of Surfaces	233
17a. Triangulation and Polygons with Sides Identified	233
17b. Classification of Compact Oriented Surfaces	236
17c. The Fundamental Group of a Surface	242

CHAPTER 18

Cohomology on Surfaces		247
18a.	1-Forms and Homology	247
18b.	Integrals of 2-Forms	251
18c.	Wedges and the Intersection Pairing	252
18d.	De Rham Theory on Surfaces	256

PART X RIEMANN SURFACES

Chapter 19	
Riemann Surfaces	263
19a. Riemann Surfaces and Analytic Mappings	263
19b. Branched Coverings	268
19c. The Riemann-Hurwitz Formula	272

xvi

Contents

Chapter 20	
Riemann Surfaces and Algebraic Curves	
20a. The Riemann Surface of an Algebraic Curve	277
20b. Meromorphic Functions on a Riemann Surface	281
20c. Holomorphic and Meromorphic 1-Forms	284
20d. Riemann's Bilinear Relations and the Jacobian	289
20e. Elliptic and Hyperelliptic Curves	291

Chapter 21

The	Riemann-Roch Theorem	295
21a.	Spaces of Functions and 1-Forms	295
21b.	Adeles	299
21c.	Riemann-Roch	303
21d.	The Abel–Jacobi Theorem	306

PART XI

HIGHER DIMENSIONS

Chapter 22

Tow	ard Higher Dimensions	317
22a.	Holes and Forms in 3-Space	317
22b.	Knots	320
22c.	Higher Homotopy Groups	324
22d.	Higher De Rham Cohomology	325
22e.	Cohomology with Compact Supports	328

Chapter 23

ner Homology	332
Homology Groups	332
Mayer-Vietoris for Homology	334
Spheres and Degree	339
Generalized Jordan Curve Theorem	343
	Homology Groups Mayer–Vietoris for Homology Spheres and Degree

Chapter 24 Duality

CIM IER 2	
Duality	346
24a. Two Lemmas from Homological Algebra	346
24b. Homology and De Rham Cohomology	350
24c. Cohomology and Cohomology with Compact Supports	355
24d. Simplicial Complexes	359

APPENDICES

Appendix A	
Point Set Topology	367
A1. Some Basic Notions in Topology	367
A2. Connected Components	369

xvii

xviii	Contents
A3. Patching	370
A4. Lebesgue Lemma	371
Appendix B	
Analysis	373
B1. Results from Plane Calculus	373
B2. Partition of Unity	375
Appendix C Algebra	378
C1. Linear Algebra	378
C2. Groups; Free Abelian Groups	380
C3. Polynomials; Gauss's Lemma	385
Appendix D	
On Surfaces	387
D1. Vector Fields on Plane Domains	387
D2. Charts and Vector Fields	389
D3. Differential Forms on a Surface	391
Appendix E	
Proof of Borsuk's Theorem	393
	575
Hints and Answers	397
References	419
Index of Symbols	421
Index	425