Serge Lang

Algebraic Number Theory

Second Edition

Serge Lang
Department of Mathematics
Yale University
New Haven, CT 06520
USA

Editorial Board

USA

S. Axler
Mathematics Department
San Francisco State
University
San Francisco, CA 94132

Mathematics Department East Hall University of Michigan Ann Arbor, MI 48109 USA

F.W. Gehring

K.A. Ribet
Mathematics Department
University of California
at Berkeley
Berkeley, CA 94720-3840
USA

Mathematics Subject Classifications (1991): 11Rxx, 11Sxx, 11Txx

With 7 Illustrations

Library of Congress Cataloging-in-Publication Data Lang, Serge, 1927–

Algebraic number theory / Serge Lang. — 2nd ed. p. cm. — (Graduate texts in mathematics; 110) Includes bibliographical references and index.

ISBN 978-1-4612-6922-9 ISBN 978-1-4612-0853-2 (eBook)

DOI 10.1007/978-1-4612-0853-2

1. Algebraic number theory. I. Title. II. Series.

QA247.L29 1994 512'.74—dc20

93-50625

Originally published in 1970 \odot by Addison-Wesley Publishing Company, Inc., Reading, Massachusetts.

© 1994, 1986 by Springer Science+Business Media New York Originally published by Springer-Verlag New York, Inc. in 1986 Softcover reprint of the hardcover 2nd edition 1986

All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher Springer Science+Business Media, LLC.

except for brief excerpts in connection with reviews or

scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.

The use of general descriptive names, trade names, trademarks, etc., in this publication, even if the former are not especially identified, is not to be taken as a sign that such names, as understood by the Trade Marks and Merchandise Marks Act, may accordingly be used freely by anyone.

9 8 7 6 5 4 3 (Corrected third printing)

Contents

Part One General Basic Theory

CHAPTER I

	Algel	brai	c I	ate	ge	rs								
1.	Localization													3
2.	Integral closure													4
3.	Prime ideals													8
4.														11
5.	Galois extensions													12
6.	Dedekind rings													18
7.	Discrete valuation rings .													22
8.	Explicit factorization of a prim	e												27
9.	Projective modules over Dedek	ind	rin	gs		•			•	•				29
1.	Definitions and completions	omp							٠					31
2.	Polynomials in complete fields							٠	٠	٠	٠	•	٠	
3.	Some filtrations				•	•	•	•	•	•	•	•	٠	41 45
4.	Unramified extensions									•	•	•	•	48
5.	Tamely ramified extensions	•					٠			•		•	•	51
	Cı	HAP'	TER	. 1	ΙΙ									
	The Differen	nt a	ınd	Di	iscı	im	ina	nt						
1. 2.	Complementary modules . The different and ramification											٠		57 62
3.	The discriminant													64
			ix									,		

X CONTENTS

CHAPTER 1	IV
-----------	----

	Cyclotomic Fields					
1.	Roots of unity					71
2.	Quadratic fields					76
3.	Gauss sums					82
4.	Relations in ideal classes	•	•	•	•	96
	CHAPTER V					
	Parallelotopes					
1.	The product formula					99
2.	Lattice points in parallelotopes					110
3.	A volume computation					116
4.	Minkowski's constant					119
	CHAPTER VI					
	The Ideal Function					
1.	Generalized ideal classes					123
2.	Lattice points in homogeneously expanding domains .					128
3.	The number of ideals in a given class	•	•	•	•	129
	CHAPTER VII					
	Ideles and Adeles					
1.	Restricted direct products					137
2.	Adeles					139
3.	Ideles					140
4.	Generalized ideal class groups; relations with idele classes					145
5.	Embedding of k_v^* in the idele classes					151
6.	Galois operation on ideles and idele classes	•	•	•	•	152
	CHAPTER VIII					
	Elementary Properties of the Zeta Function and	L-	seri	ies		
1.	Lemmas on Dirichlet series					155
2.	Zeta function of a number field					159
3.	The <i>L</i> -series					162
4.	Density of primes in arithmetic progressions			•		166
5.	Faltings' finiteness theorem	•	•	•	•	170

CONTENTS xi

Part Two Class Field Theory

CHAPTER IX

	Norm Index Computations						
1.	Algebraic preliminaries						179
2.	Exponential and logarithm functions						185
3.	The local norm index						187
4.	A theorem on units						190
5.	The global cyclic norm index						193
6.	Applications	•	•	•	•		195
	Chapter X						
	The Artin Symbol, Reciprocity Law, and Class	Fie	ld '	The	ory		
1.	Formalism of the Artin symbol						197
2.	Existence of a conductor for the Artin symbol						200
3.	Class fields	•			٠	•	206
	CHAPTER XI The Existence Theorem and Local Class Fiel	d :	Γhe	ory			
1.	Reduction to Kummer extensions			•			011
2.	Proof of the existence theorem	•	•	•	•	•	213 215
3.	The complete splitting theorem	•	•	•	•	•	217
4.	Local class field theory and the ramification theorem	•	•		•	•	219
5.	The Hilbert class field and the principal ideal theorem		•				224
6.	Infinite divisibility of the universal norms				•	•	226
	Chapter XII						
	L-series Again						
1.	The proper abelian L-series			•			229
2.	Artin (non-abelian) L-series			•			232
3.	Induced characters and L-series contributions						236

xii CONTENTS

Part Three Analytic Theory

CHAPTER XIII

	Functional Equation of th	e Ze	eta	F'u	nct	ion	, н	eck	e's	Pro	of		
1.	The Poisson summation formula												245
2.	A special computation												250
3.													253
4.	Application to the Brauer-Siegel	theo	rem	l .									260
5.	Applications to the ideal function												262
	Appendix: Other applications	•	•	٠		٠	•	•	٠		•	•	273
	Снав	TER	X	IV									
	Functional Equ	atio	n,	Tat	te's	Tł	ıesi	s					
1.	Local additive duality												276
2.	Local multiplicative theory												278
3.	Local functional equation												280
4.	Local computations												282
5.	Restricted direct products												287
6.	Global additive duality and Riem	ann	-Ro	ch	the	ore	m						289
7.	Global functional equation												292
8.	Global computations	٠										٠	297
	Сна	PTE	кX	v									
	Density of Primes a	ınd	Ta	ube	eria	n I	hec	orei	m				
1.	The Dirichlet integral												303
2.	Ikehara's Tauberian theorem .												304
3.	Tauberian theorem for Dirichlet												310
4.	Non-vanishing of the L-series .												312
5.	Densities												315
	Сна	PTE:	кХ	ΊVΙ									
	The Brauer	. c:	امحما	ากเ	haa	ron							
			_										
1.	An upper estimate for the residu									•	•	٠	322
2.	A lower bound for the residue .								•	•	•	•	323
3.	Comparison of residues in norma								٠			٠	325
4.	End of the proofs			•			٠	٠	٠	•	•		327
	Appendix: Brauer's lemma						•						328

CONTENTS	xiii

CHAPTER XVII

Explicit Formulas

1.	Weierstrass	factor	izatio	on o	f th	e L	-ser	ies							•	331
2.	An estimate	e for ξ	/ξ.													333
3.	The Weil fo	rmula														337
4.	The basic st	um an	d the	firs	t pa	rt	of it	ts e	valı	ıati	on					344
5.	Evaluation	of the	sum	: Se	cond	d pa	art	•						•	•	348
Bit	oliography															353
Ind	lex															355