Editors

S.S. Chern I. Kaplansky C.C. Moore I.M. Singer

Mathematical Sciences Research Institute Publications

Volume 1	Freed and Uhlenbeck: Instantons and Four-Manifold Second Edition
Volume 2	Chern (ed.): Seminar on Nonlinear Partial Differential Equations
Volume 3	Lepowsky Mandelstam, and Singer (eds.): Vertex Operators in Mathematics and Physics
Volume 4	Kac (ed.): Infinite Dimensional Groups with Applications
Volume 5	Blackadar: K-Theory for Operator Algebras
Volume 6	Moore (ed.): Group Representations, Ergodic Theory,
	Operator Algebras, and Mathematical Physics
Volume 7	Chorin and Majda (eds.): Wave Motion: Theory, Modelling, and Computation
Volume 8	Gersten (ed.): Essays in Group Theory
Volume 9	Moore and Schochet: Global Analysis on Foliated Spaces
Volume 10	Drasin, Earle, Gehring, Kra, and Marden (eds.):
	Holomorphic Functions and Moduli I
Volume 11	Drasin, Earle, Gehring, Kra, and Marden (eds.):
	Holomorphic Functions and Moduli II
Volume 12	Ni, Peletier, and Serrin (eds.): Nonlinear Diffusion
	Equations and their Equilibrium States I
Volume 13	Ni, Peletier, and Serrin (eds.): Nonlinear Diffusion
	Equations and their Equilibrium States II
Volume 14	Goodman, de la Harpe, and Jones: Coxeter Graphs and
	Towers of Algebras
Volume 15	Hochster, Huneke and Sally (eds.): Commutative Algebra
Volume 16	Ihara, Ribet, and Serre (eds.): Galois Groups over Q
Volume 17	Concus, Finn, and Hoffman (eds.): Geometric Analysis and
	Computer Graphics
Volume 18	Bryant, Chern, Gardner, Goldschmidt, and Griffiths:
	Exterior Differential Systems
Volume 19	Alperin (ed.): Arboreal Group Theory
Volume 20	Dazord and Weinstein (eds.): Symplectic Geometry,
	Groupoids, and Integrable Systems
Volume 21	Moschovakis (ed.): Logic from Computer Science
Volume 22	Ratiu (ed.): The Geometry of Hamiltonian Systems
Volume 23	Baumslag and Miller (eds.): Algorithms and Classification
	in Combinatorial Group Theory
Volume 24	Montgomery and Small (eds.): Noncommutative Rings
$Volume \ 25$	Akbulut and King: Topology of Real Algebraic Sets

Topology of Real Algebraic Sets

Springer-Verlag New York Berlin Heidelberg London Paris Tokyo Hong Kong Barcelona Budapest Selman Akbulut Department of Mathematics Michigan State University East Lansing, MI 48824 USA Henry King Department of Mathematics University of Maryland College Park, MD 20742 USA

The Mathematical Sciences Research Institute wishes to acknowledge the support by the National Sciences Foundation.

Mathematical Subject Classifications: 14P25, 57N80, 32C05, 58A35

Library of Congress Cataloging-in-Publication Data
Akbulut, Selman, 1948-Topology of real algebraic sets / Selman Akbulut, Henry King.
p. cm -- (Mathematical Sciences Research Institute
publications : 25)
Includes bibliographical references and index.
ISBN-13:978-1-4613-9741-0
e-ISBN-13:978-1-4613-9739-7
DOI: 10.1007/978-1-4613-9739-7

1. Ordered fields. 2. Geometry, Algebraic. I. King, Henry, 1948- . II. Title. III. Series. QA247.A42 1992 516.3'5--dc20 9

91 - 37834

Printed on acid-free paper.

© 1992 by Springer-Verlag New York, Inc. Softcover reprint of the hardcover 1st edition 1992

All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publishers (Springer-Verlag New York, Inc., 175 Fifth Avenue, New York, NY 10010, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now know or hereafter developed is forbidden. The use of general descriptive names, trade names, trademarks, etc., in this publication, even if the former are not especially identified, is not to be taken as a sign that such names, as understood by the Trade Marks and Merchandise Marks Act, may accordingly be used freely by anyone.

Production managed by Karen Phillips, Manufacturing supervised by Robert Paella. Camera-ready copy prepared by the Mathematical Sciences Research Institute using $\mathcal{AMS-TEX}$.

987654321

ISBN-13:978-1-4613-9741-0

Preface

In the Fall of 1975 we started a joint project with the ultimate goal of topologically classifying real algebraic sets. This has been a long happy collaboration (c.f., [**K2**]). In 1985 while visiting M.S.R.I. we organized and presented our classification results up to that point in the M.S.R.I. preprint series [**AK14**] -[**AK17**]. Since these results are interdependent and require some prerequisites as well as familiarity with real algebraic geometry, we decided to make them self contained by presenting them as a part of a book in real algebraic geometry. Even though we have not arrived to our final goal yet we feel that it is time to introduce them in a self contained coherent version and demonstrate their use by giving some applications.

Chapter I gives the overview of the classification program. Chapter II has all the necessary background for the rest of the book, which therefore can be used as a course in real algebraic geometry. It starts with the elementary properties of real algebraic sets and ends with the recent solution of the Nash Conjecture. Chapter III and Chapter IV develop the theory of resolution towers. Resolution towers are basic topologically defined objects generalizing the notion of manifold. They enable us to study singular spaces in an organized way. Chapter V shows how to obtain algebraic sets from resolution towers. Chapter VI shows how to put resolution tower structures on real or complex algebraic sets. Chapter VII applies this theory to real algebraic sets of dimension ≤ 3 by giving their topological characterization. An impatient reader can go directly to Chapter VII from Chapter I in order to get motivated for the results of Chapter III through Chapter VI.

We would like to thank National Science Foundation, the Institute for Advanced Study, the Max-Planck Institute, the Mathematical Sciences Research Institute, the General Research Board of the University of Maryland as well as our respective universities: Michigan State University and University of Maryland for generous support while this work has been in progress. Also we would

PREFACE

like to thank Lowell Jones and Elmer Rees for timely advice. The first named author would like thank his advisor R.Kirby for introducing him to the subject, and his teachers: Fahrettin Akbulut, Írfan Barış, S.S.Chern, Tom Farrell, Moe Hirsch, Dennis Sullivan, Larry Taylor for inspiration, and TUBITAK (Turkish scientific research institute) for the initial support. The second named author would also like to thank Dick Palais for teaching him much about real algebraic geometry and Dennis Sullivan for general mathematical stimulation. We would like to thank J. Bochnak and W. Kucharz for their helpful comments on preliminary versions of this book. We thank D. Glaubman for helping us with some of the computer generated figures. We would like to thank Tammy Hatfield, Cindy Smith, and Cathy Friess for doing a great job of typesetting this book in IATEX. Finally we would like to thank Margaret Pattison for her help in preparing this book for publication.

We now fix some notation, some of it nonstandard, which we will use throughout the book. We let **R** and **C** denote the real and complex numbers. We let *I* denote the closed interval [0, 1] in **R**. If *A* is a subset of a topological space then we let Cl(A) denote the closure of *A* and let Int(A) denote its interior. If *A* and *B* are sets, then A - B denotes their difference. If $f: M \to N$ is a smooth map between smooth manifolds, we let $df: TM \to TN$ denote the induced mapping on tangent spaces. The expression $A \sqcup B$ means the disjoint union. A closed manifold means a compact manifold without boundary.

We now introduce some nonstandard notation. If $f: M \to N$ is a function and $S \subset M$ we will let f| denote the restriction $f|_S$ if S is clear from context. This is useful if S is some complicated expression which would only clutter up a formula and make it more unreadable. If X is a topological space, we let cXdenote the cone on X, so $cX = X \times [0, 1]/X \times 0$, the quotient space of $X \times [0, 1]$ with $X \times 0$ crushed to a point. If x (or y or z etc.) is a point in \mathbb{R}^n then x_i (or y_i or z_i) will denote the *i*-th coordinate of x. We let \mathbb{R}^n_i denote the coordinate hyperplane { $x \in \mathbb{R}^n \mid x_i = 0$ }.

The end of a proof is marked by a sign thusly:

We have tried to organize long proofs in a hierarchical manner. In the midst of a proof we may make an assertion, which we then proceed to prove. The reader might prefer to skip this proof on first reading or do it as an exercise if she is energetic. The hope is that this will make the overall argument clearer by hiding some of the details. To set off the proof of an assertion from the rest of the proof we mark its end thusly:

Contents

Preface	
List of Figures	ix
Chapter I. INTRODUCTION	1
1. Overview	1
2. Stratified Sets	5
3. Ticos	6
4. Resolution Towers	7
Chapter II. ALGEBRAIC SETS	17
1. Basic Properties of Algebraic Sets	17
2. Singularities of Real and Complex Algebraic Sets	22
3. Projective Algebraic Sets	33
4. Grassmannians	37
5. Blowing Up	40
6. Blowing Down	50
7. Algebraic Homology	53
8. Making Smooth Objects Algebraic	57
9. Homology of Blowups	77
10. Isotoping Submanifolds to Algebraic Subsets	85
Chapter III. TICOS	93
1. Some Results about Smooth Functions	93
2. Ticos	95

Tico Blowups	104
Full Ticos	120
Type N Tico Maps	121
Submersive Tico Maps	131
Micos	133
apter IV. RESOLUTION TOWERS	136
Definiton of Resolution Towers	136
Blowing up Resolution Towers	141
Realizations of Resolution Towers	151
apter V. ALGEBRAIC STRUCTURES ON	
RESOLUTION TOWERS	158
Making Tico Maps Algebraic	158
Nice Charts on Resolution Towers	161
Quasialgebraic Towers are Algebraic	167
RF Towers are Quasialgebraic	170
apter VI. RESOLUTION TOWER STRUCTURES ON	
ALGEBRAIC SETS	173
Uzunblowups and Fullness	174
Complex Ticos and Complexifications	176
Extending Algebraic Resolution Towers	183
Resolution Towers for Algebraic Sets	186
apter VII. THE CHARACTERIZATION OF	
THREE DIMENSIONAL ALGEBRAIC SETS	191
Obstructions	193
The Cobordism Groups	202
Characterization in Dimension 3	213
Algebraic Resolution of Real Algebraic Sets in	
Dimension Three	219
Bounding Resolution Towers	225
liography	244
ex	247
	Full Ticos Type N Tico Maps Submersive Tico Maps Micos apter IV. RESOLUTION TOWERS Definiton of Resolution Towers Blowing up Resolution Towers Realizations of Resolution Towers Realizations of Resolution Towers apter V. ALGEBRAIC STRUCTURES ON RESOLUTION TOWERS Making Tico Maps Algebraic Nice Charts on Resolution Towers Quasialgebraic Towers are Algebraic RF Towers are Quasialgebraic apter VI. RESOLUTION TOWER STRUCTURES ON ALGEBRAIC SETS Uzunblowups and Fullness Complex Ticos and Complexifications Extending Algebraic Resolution Towers Resolution Towers for Algebraic Sets apter VI. THE CHARACTERIZATION OF THREE DIMENSIONAL ALGEBRAIC SETS Obstructions The Cobordism Groups Characterization in Dimension 3 Algebraic Resolution Towers Bounding Resolution Towers

viii

List of Figures

I.1.2 A_1 spaces with and without boundary I.1.3 An algebraic set which is not an A_k -space I.1.4 A topological resolution I.1.5 A resolution tower for Z I.4.1 A resolution tower I.4.2 Realization of a resolution tower I.4.3 X I.4.4 Tangential intersection I.4.5 $\pi^{-1}(X_1)$ pairwise transverse, but not a tico I.4.6 $\pi^{-1}(X_1)$ now a tico I.4.7 $\pi^{-1}(X_0)$ now a tico II.4.1 Projecting to the normal bundle of L in V II.6.1 Algebraic blowing down II.6.2 Squishing a sphere to a figure 8 II.6.3 Squishing a hyperboloid to a parabola II.7.1 V and Y_j II.8.1 Making a map algebraic II.8.2 The doubled cobordism II.8.3 The doubled cobordism made algebraic II.8.4 Making an algebraic embedding into an algebraic subset II.8.5 A smooth approximation II.8.6 The cobordism to the algebraic situation II.8.7 The inductive step, reducing the number of nonempty M_{α} 's II.8.8 Detail of the added handle II.8.9 X, the double of T II.8.10 Y''	I.1.1 A noncompact real algebraic set	2
I.1.4 A topological resolution I.1.5 A resolution tower for Z I.4.1 A resolution tower I.4.2 Realization of a resolution tower I.4.3 X I.4.4 Tangential intersection I.4.5 $\pi^{-1}(X_1)$ pairwise transverse, but not a tico I.4.6 $\pi^{-1}(X_1)$ now a tico I.4.7 $\pi^{-1}(X_0)$ now a tico II.4.1 Projecting to the normal bundle of L in V II.6.1 Algebraic blowing down II.6.2 Squishing a sphere to a figure 8 II.6.3 Squishing a hyperboloid to a parabola II.7.1 V and Y _j II.8.1 Making a map algebraic II.8.2 The doubled cobordism II.8.3 The doubled cobordism made algebraic II.8.4 Making an algebraic embedding into an algebraic subset II.8.5 A smooth approximation II.8.6 The cobordism to the algebraic situation II.8.7 The inductive step, reducing the number of nonempty M_{α} 's II.8.9 X, the double of T	I.1.2 A_1 spaces with and without boundary	2
I.1.5 A resolution tower for Z I.4.1 A resolution tower I.4.2 Realization of a resolution tower I.4.3 X I.4.4 Tangential intersection I.4.5 $\pi^{-1}(X_1)$ pairwise transverse, but not a tico I.4.6 $\pi^{-1}(X_1)$ now a tico I.4.7 $\pi^{-1}(X_0)$ now a tico II.4.1 Projecting to the normal bundle of L in V II.6.1 Algebraic blowing down II.6.2 Squishing a sphere to a figure 8 II.6.3 Squishing a hyperboloid to a parabola II.7.1 V and Y _j II.8.1 Making a map algebraic II.8.2 The doubled cobordism II.8.3 The doubled cobordism made algebraic II.8.4 Making an algebraic embedding into an algebraic subset II.8.5 A smooth approximation II.8.6 The cobordism to the algebraic situation II.8.7 The inductive step, reducing the number of nonempty M_{α} 's II.8.8 Detail of the added handle II.8.9 X, the double of T	I.1.3 An algebraic set which is not an A_k -space	3
I.4.1 A resolution tower I.4.2 Realization of a resolution tower I.4.3 X I.4.4 Tangential intersection I.4.5 $\pi^{-1}(X_1)$ pairwise transverse, but not a tico I.4.6 $\pi^{-1}(X_1)$ now a tico I.4.7 $\pi^{-1}(X_0)$ now a tico II.4.1 Projecting to the normal bundle of L in V II.6.1 Algebraic blowing down II.6.2 Squishing a sphere to a figure 8 II.6.3 Squishing a hyperboloid to a parabola II.7.1 V and Y _j II.8.1 Making a map algebraic II.8.2 The doubled cobordism II.8.3 The doubled cobordism made algebraic II.8.4 Making an algebraic embedding into an algebraic subset II.8.5 A smooth approximation II.8.6 The cobordism to the algebraic situation II.8.7 The inductive step, reducing the number of nonempty M_{α} 's II.8.8 Detail of the added handle II.8.9 X, the double of T	I.1.4 A topological resolution	3
I.4.2 Realization of a resolution tower I.4.3 X I.4.4 Tangential intersection I.4.5 $\pi^{-1}(X_1)$ pairwise transverse, but not a tico I.4.6 $\pi^{-1}(X_1)$ now a tico I.4.7 $\pi^{-1}(X_0)$ now a tico II.4.1 Projecting to the normal bundle of L in V II.6.1 Algebraic blowing down II.6.2 Squishing a sphere to a figure 8 II.6.3 Squishing a hyperboloid to a parabola II.7.1 V and Y _j II.8.1 Making a map algebraic II.8.2 The doubled cobordism II.8.3 The doubled cobordism made algebraic II.8.4 Making an algebraic embedding into an algebraic subset II.8.5 A smooth approximation II.8.6 The cobordism to the algebraic situation II.8.7 The inductive step, reducing the number of nonempty M_{α} 's II.8.8 Detail of the added handle II.8.9 X, the double of T	I.1.5 A resolution tower for Z	4
I.4.3 X I.4.4 Tangential intersection I.4.5 $\pi^{-1}(X_1)$ pairwise transverse, but not a tico I.4.6 $\pi^{-1}(X_1)$ now a tico I.4.7 $\pi^{-1}(X_0)$ now a tico II.4.1 Projecting to the normal bundle of L in V II.6.1 Algebraic blowing down II.6.2 Squishing a sphere to a figure 8 II.6.3 Squishing a hyperboloid to a parabola II.7.1 V and Y _j II.8.1 Making a map algebraic II.8.2 The doubled cobordism II.8.3 The doubled cobordism made algebraic II.8.4 Making an algebraic embedding into an algebraic subset II.8.5 A smooth approximation II.8.6 The cobordism to the algebraic situation II.8.7 The inductive step, reducing the number of nonempty M_{α} 's II.8.8 Detail of the added handle II.8.9 X, the double of T	I.4.1 A resolution tower	8
I.4.4 Tangential intersection I.4.5 $\pi^{-1}(X_1)$ pairwise transverse, but not a tico I.4.6 $\pi^{-1}(X_1)$ now a tico I.4.7 $\pi^{-1}(X_0)$ now a tico II.4.1 Projecting to the normal bundle of <i>L</i> in <i>V</i> II.6.1 Algebraic blowing down II.6.2 Squishing a sphere to a figure 8 II.6.3 Squishing a hyperboloid to a parabola II.7.1 <i>V</i> and <i>Y_j</i> II.8.1 Making a map algebraic II.8.2 The doubled cobordism II.8.3 The doubled cobordism made algebraic II.8.4 Making an algebraic embedding into an algebraic subset II.8.5 A smooth approximation II.8.6 The cobordism to the algebraic situation II.8.7 The inductive step, reducing the number of nonempty M_{α} 's II.8.9 <i>X</i> , the double of <i>T</i>	I.4.2 Realization of a resolution tower	9
I.4.5 $\pi^{-1}(X_1)$ pairwise transverse, but not a tico I.4.6 $\pi^{-1}(X_1)$ now a tico I.4.7 $\pi^{-1}(X_0)$ now a tico II.4.1 Projecting to the normal bundle of <i>L</i> in <i>V</i> II.6.1 Algebraic blowing down II.6.2 Squishing a sphere to a figure 8 II.6.3 Squishing a hyperboloid to a parabola II.7.1 <i>V</i> and <i>Y</i> _j II.8.1 Making a map algebraic II.8.2 The doubled cobordism II.8.3 The doubled cobordism made algebraic II.8.4 Making an algebraic embedding into an algebraic subset II.8.5 A smooth approximation II.8.6 The cobordism to the algebraic situation II.8.7 The inductive step, reducing the number of nonempty M_{α} 's II.8.8 Detail of the added handle II.8.9 <i>X</i> , the double of <i>T</i>	I.4.3 X	10
I.4.6 $\pi^{-1}(X_1)$ now a tico I.4.7 $\pi^{-1}(X_0)$ now a tico II.4.1 Projecting to the normal bundle of L in V II.6.1 Algebraic blowing down II.6.2 Squishing a sphere to a figure 8 II.6.3 Squishing a hyperboloid to a parabola II.7.1 V and Y_j II.8.1 Making a map algebraic II.8.2 The doubled cobordism II.8.3 The doubled cobordism made algebraic II.8.4 Making an algebraic embedding into an algebraic subset II.8.5 A smooth approximation II.8.6 The cobordism to the algebraic situation II.8.7 The inductive step, reducing the number of nonempty M_{α} 's II.8.8 Detail of the added handle II.8.9 X , the double of T	I.4.4 Tangential intersection	11
I.4.7 $\pi^{-1}(X_0)$ now a tico II.4.1 Projecting to the normal bundle of L in V II.6.1 Algebraic blowing down II.6.2 Squishing a sphere to a figure 8 II.6.3 Squishing a hyperboloid to a parabola II.7.1 V and Y_j II.8.1 Making a map algebraic II.8.2 The doubled cobordism II.8.3 The doubled cobordism made algebraic II.8.4 Making an algebraic embedding into an algebraic subset II.8.5 A smooth approximation II.8.6 The cobordism to the algebraic situation II.8.7 The inductive step, reducing the number of nonempty M_{α} 's II.8.8 Detail of the added handle II.8.9 X , the double of T	I.4.5 $\pi^{-1}(X_1)$ pairwise transverse, but not a tico	12
II.4.1 Projecting to the normal bundle of L in V II.6.1 Algebraic blowing down II.6.2 Squishing a sphere to a figure 8 II.6.3 Squishing a hyperboloid to a parabola II.7.1 V and Y_j II.8.1 Making a map algebraic II.8.2 The doubled cobordism II.8.3 The doubled cobordism made algebraic II.8.4 Making an algebraic embedding into an algebraic subset II.8.5 A smooth approximation II.8.6 The cobordism to the algebraic situation II.8.7 The inductive step, reducing the number of nonempty M_{α} 's II.8.8 Detail of the added handle II.8.9 X , the double of T	I.4.6 $\pi^{-1}(X_1)$ now a tico	12
II.6.1 Algebraic blowing down II.6.2 Squishing a sphere to a figure 8 II.6.3 Squishing a hyperboloid to a parabola II.7.1 V and Y_j II.8.1 Making a map algebraic II.8.2 The doubled cobordism II.8.3 The doubled cobordism made algebraic II.8.4 Making an algebraic embedding into an algebraic subset II.8.5 A smooth approximation II.8.6 The cobordism to the algebraic situation II.8.7 The inductive step, reducing the number of nonempty M_{α} 's II.8.8 Detail of the added handle II.8.9 X, the double of T	I.4.7 $\pi^{-1}(X_0)$ now a tico	13
II.6.2 Squishing a sphere to a figure 8 II.6.3 Squishing a hyperboloid to a parabola II.7.1 V and Y_j II.8.1 Making a map algebraic II.8.2 The doubled cobordism II.8.3 The doubled cobordism made algebraic II.8.4 Making an algebraic embedding into an algebraic subset II.8.5 A smooth approximation II.8.6 The cobordism to the algebraic situation II.8.7 The inductive step, reducing the number of nonempty M_{α} 's II.8.8 Detail of the added handle II.8.9 X, the double of T	II.4.1 Projecting to the normal bundle of L in V	39
II.6.3 Squishing a hyperboloid to a parabola II.7.1 V and Y_j II.8.1 Making a map algebraic II.8.2 The doubled cobordism II.8.3 The doubled cobordism made algebraic II.8.4 Making an algebraic embedding into an algebraic subset II.8.5 A smooth approximation II.8.6 The cobordism to the algebraic situation II.8.7 The inductive step, reducing the number of nonempty M_{α} 's II.8.8 Detail of the added handle II.8.9 X, the double of T	II.6.1 Algebraic blowing down	51
II.7.1 V and Y_j II.8.1 Making a map algebraic II.8.2 The doubled cobordism II.8.3 The doubled cobordism made algebraic II.8.4 Making an algebraic embedding into an algebraic subset II.8.5 A smooth approximation II.8.6 The cobordism to the algebraic situation II.8.7 The inductive step, reducing the number of nonempty M_{α} 's II.8.8 Detail of the added handle II.8.9 X, the double of T	II.6.2 Squishing a sphere to a figure 8	52
II.8.1 Making a map algebraic II.8.2 The doubled cobordism II.8.3 The doubled cobordism made algebraic II.8.4 Making an algebraic embedding into an algebraic subset II.8.5 A smooth approximation II.8.6 The cobordism to the algebraic situation II.8.7 The inductive step, reducing the number of nonempty M_{α} 's II.8.8 Detail of the added handle II.8.9 X, the double of T	II.6.3 Squishing a hyperboloid to a parabola	53
II.8.2 The doubled cobordism II.8.3 The doubled cobordism made algebraic II.8.4 Making an algebraic embedding into an algebraic subset II.8.5 A smooth approximation II.8.6 The cobordism to the algebraic situation II.8.7 The inductive step, reducing the number of nonempty M_{α} 's II.8.8 Detail of the added handle II.8.9 X, the double of T	II.7.1 V and Y_j	56
II.8.3 The doubled cobordism made algebraic II.8.4 Making an algebraic embedding into an algebraic subset II.8.5 A smooth approximation II.8.6 The cobordism to the algebraic situation II.8.7 The inductive step, reducing the number of nonempty M_{α} 's II.8.8 Detail of the added handle II.8.9 X, the double of T	II.8.1 Making a map algebraic	63
II.8.4 Making an algebraic embedding into an algebraic subset II.8.5 A smooth approximation II.8.6 The cobordism to the algebraic situation II.8.7 The inductive step, reducing the number of nonempty M_{α} 's II.8.8 Detail of the added handle II.8.9 X, the double of T	II.8.2 The doubled cobordism	66
II.8.5 A smooth approximation II.8.6 The cobordism to the algebraic situation II.8.7 The inductive step, reducing the number of nonempty M_{α} 's II.8.8 Detail of the added handle II.8.9 X, the double of T	II.8.3 The doubled cobordism made algebraic	66
II.8.6 The cobordism to the algebraic situation II.8.7 The inductive step, reducing the number of nonempty M_{α} 's II.8.8 Detail of the added handle II.8.9 X, the double of T	II.8.4 Making an algebraic embedding into an algebraic subset	69
II.8.7 The inductive step, reducing the number of nonempty M_{α} 's II.8.8 Detail of the added handle II.8.9 X, the double of T	II.8.5 A smooth approximation	69
II.8.8 Detail of the added handle II.8.9 X , the double of T	II.8.6 The cobordism to the algebraic situation	72
II.8.9 X , the double of T	II.8.7 The inductive step, reducing the number of nonempty M_{lpha} 's	73
	II.8.8 Detail of the added handle	73
IL8.10 Y''	II.8.9 X , the double of T	
	II.8.10 Y''_i	75

II.8.11 Characterizing Zopen sets with isolated singularities	76
II.8.12 Balls D_i making a spine of W	76
II.8.13 $\bigcup S_i$ a spine of W_0	77
II.8.14 Adding a handle to reduce the number of spheres in ∂W_i	77
II.10.1 An almost nonsingular immersion	88
II.10.2 Making an immersion algebraic	90
III.2.1 A tico in the disc	96
IV.1.1 A realization of a resolution tower	138
IV.1.2 A resolution tower	138
$\mathrm{IV.}1.3$ The realization of the resolution tower	138
VII.1.1 Y ₀	195
VII.1.2 <i>Y</i> ₁	196
VII.1.3 Y ₂	196
VII.1.4 <i>Y</i> ₃	197
VII.2.1 \mathfrak{T}' and its resolution	205
VII.2.2 A typical tower in $T\mathcal{R}_2$	206
VII.2.3 Some generators of \mathfrak{N}_2^S	212
VII.3.1 X and a resolution $\mathfrak T$ of $X - K$	215
VII.3.2 The link L and its induced resolution tower \mathfrak{T}'''	215
VII.3.3 A resolution tower \mathfrak{T}'' for $\mathfrak{c}L$	216
VII.3.4 A resolution tower \mathfrak{T}' for X	216
VII.5.1 Pairing up points of V_1 and V_{12}	226
VII.5.2 The realization of ${\mathfrak T}$	226
$\mathrm{VII.5.3}$ Starting to make $\mathfrak T$ a weak boundary	227
VII.5.4 Handles added until each $T\cap C_{02}$ has at most one point	228
${ m VII.5.5}$ Handles added until each $T\cap C_{02}$ has one point	228
VII.5.6 Adding a round handle	228
VII.5.7 Resolving the cone on the 0-skeleton	230
VII.5.8 The first two pieces of V_2'	232
VII.5.9 The first pieces of V'_3	233
VII.5.10 Covering a new handle in C_2 by one in C_3	234
VII.5.11 Another type of handle we may add to C_2	235
VII.5.12 The involution $ au$	236
VII.5.13 A handle pair added to C_2	237
VII.5.14 Adding a handle to C_3 which reduces (d, e, f)	238
VII.5.15 Covering with a round handle	239