Editors
S.S. Chern
I. Kaplansky
C.C. Moore
I.M. Singer

Mathematical Sciences Research Institute Publications

Volume 1 Freed and Uhlenbeck: Instantons and Four-Manifold Second Edition
Volume 2 Chern (ed.): Seminar on Nonlinear Partial Differential Equations
Volume 3 Lepowsky Mandelstam, and Singer (eds.): Vertex Operators in Mathematics and Physics
Volume 4 Kac (ed.): Infinite Dimensional Groups with Applications
Volume 5 Blackadar: K-Theory for Operator Algebras
Volume 6 Moore (ed.): Group Representations, Ergodic Theory, Operator Algebras, and Mathematical Physics
Volume 7 Chorin and Majda (eds.): Wave Motion: Theory, Modelling, and Computation
Volume 8 Gersten (ed.): Essays in Group Theory
Volume 9 Moore and Schochet: Global Analysis on Foliated Spaces
Volume 10 Drasin, Earle, Gehring, Kra, and Marden (eds.):
Holomorphic Functions and Moduli I
Volume 11 Drasin, Earle, Gehring, Kra, and Marden (eds.): Holomorphic Functions and Moduli II
Volume 12 Ni , Peletier, and Serrin (eds.): Nonlinear Diffusion Equtions and their Equilibrium States I
Volume 13 Ni , Peletier, and Serrin (eds.): Nonlinear Diffusion Equations and their Equilibrium States II
Volume 14 Goodman, de la Harpe, and Jones: Coxeter Graphs and Towers of Algebras
Volume 15 Hochster, Huneke and Sally (eds.): Commutative Algebra
Volume 16 Ihara, Ribet, and Serre (eds.): Galois Groups over Q
Volume 17 Concus, Finn, and Hoffman (eds.): Geometric Analysis and Computer Graphics
Volume 18 Bryant, Chern, Gardner, Goldschmidt, and Griffiths: Exterior Differential Systems
Volume 19 Alperin (ed.): Arboreal Group Theory
Volume 20 Dazord and Weinstein (eds.): Symplectic Geometry, Groupoids, and Integrable Systems
Volume 21 Moschovakis (ed.): Logic from Computer Science
Volume 22 Ratiu (ed.): The Geometry of Hamiltonian Systems
Volume 23 Baumslag and Miller (eds.): Algorithms and Classification in Combinatorial Group Theory
Volume 24 Montgomery and Small (eds.): Noncommutative Rings
Volume 25 Akbulut and King: Topology of Real Algebraic Sets

Selman Akbulut Henry King

Topology of Real Algebraic Sets

Springer-Verlag
New York Berlin Heidelberg London Paris
Tokyo Hong Kong Barcelona Budapest

Selman Akbulut
Department of Mathematics
Michigan State University
East Lansing, MI 48824
USA

Henry King
Department of Mathematics
University of Maryland
College Park, MD 20742
USA

The Mathematical Sciences Research Institute wishes to acknowledge the support by the National Sciences Foundation.

Mathematical Subject Classifications: 14P25, 57N80, 32C05, 58A35

```
Library of Congress Cataloging-in-Publication Data
Akbulut, Selman, 1948-
    Topology of real algebraic sets / Selman Akbulut, Henry King.
        p. cm -- (Mathematical Sciences Research Institute
    publications:25)
        Includes bibliographical references and index.
        ISBN-13:978-1-4613-9741-0 e-ISBN-13:978-1-4613-9739-7
        DOI: 10.1007/978-1-4613-9739-7
        1. Ordered fields. 2. Geometry, Algebraic. I. King, Henry,
    1948- . II. Title. III. Series.
    QA247.A42 1992
    516.3'5--dc20 91-37834
```

Printed on acid-free paper.
© 1992 by Springer-Verlag New York, Inc.
Softcover reprint of the hardcover 1st edition 1992
All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publishers (Springer-Verlag New York, Inc., 175 Fifth Avenue, New York, NY 10010, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now know or hereafter developed is forbidden. The use of general descriptive names, trade names, trademarks, etc., in this publication, even if the former are not especially identified, is not to be taken as a sign that such names, as understood by the Trade Marks and Merchandise Marks Act, may accordingly be used freely by anyone.

Production managed by Karen Phillips, Manufacturing supervised by Robert Paella. Camera-ready copy prepared by the Mathematical Sciences Research Institute using $\mathcal{A} \mathcal{M S}^{\mathcal{S}}-\mathrm{T}_{\mathrm{E}} \mathrm{X}$.

Preface

In the Fall of 1975 we started a joint project with the ultimate goal of topologically classifying real algebraic sets. This has been a long happy collaboration (c.f., [K2]). In 1985 while visiting M.S.R.I. we organized and presented our classification results up to that point in the M.S.R.I. preprint series [AK14] -[AK17]. Since these results are interdependent and require some prerequisites as well as familiarity with real algebraic geometry, we decided to make them self contained by presenting them as a part of a book in real algebraic geometry. Even though we have not arrived to our final goal yet we feel that it is time to introduce them in a self contained coherent version and demonstrate their use by giving some applications.

Chapter I gives the overview of the classification program. Chapter II has all the necessary background for the rest of the book, which therefore can be used as a course in real algebraic geometry. It starts with the elementary properties of real algebraic sets and ends with the recent solution of the Nash Conjecture. Chapter III and Chapter IV develop the theory of resolution towers. Resolution towers are basic topologically defined objects generalizing the notion of manifold. They enable us to study singular spaces in an organized way. Chapter V shows how to obtain algebraic sets from resolution towers. Chapter VI shows how to put resolution tower structures on real or complex algebraic sets. Chapter VII applies this theory to real algebraic sets of dimension ≤ 3 by giving their topological characterization. An impatient reader can go directly to Chapter VII from Chapter I in order to get motivated for the results of Chapter III through Chapter VI .

We would like to thank National Science Foundation, the Institute for Advanced Study, the Max-Planck Institute, the Mathematical Sciences Research Institute, the General Research Board of the University of Maryland as well as our respective universities: Michigan State University and University of Maryland for generous support while this work has been in progress. Also we would
like to thank Lowell Jones and Elmer Rees for timely advice. The first named author would like thank his advisor R.Kirby for introducing him to the subject, and his teachers: Fahrettin Akbulut, Írfan Barıs, S.S.Chern, Tom Farrell, Moe Hirsch, Dennis Sullivan, Larry Taylor for inspiration, and TUBITAK (Turkish scientific research institute) for the initial support. The second named author would also like to thank Dick Palais for teaching him much about real algebraic geometry and Dennis Sullivan for general mathematical stimulation. We would like to thank J. Bochnak and W. Kucharz for their helpful comments on preliminary versions of this book. We thank D. Glaubman for helping us with some of the computer generated figures. We would like to thank Tammy Hatfield, Cindy Smith, and Cathy Friess for doing a great job of typesetting this book in IATEX. Finally we would like to thank Margaret Pattison for her help in preparing this book for publication.

We now fix some notation, some of it nonstandard, which we will use throughout the book. We let \mathbf{R} and \mathbf{C} denote the real and complex numbers. We let I denote the closed interval $[0,1]$ in \mathbf{R}. If A is a subset of a topological space then we let $\mathrm{Cl}(A)$ denote the closure of A and let $\operatorname{Int}(A)$ denote its interior. If A and B are sets, then $A-B$ denotes their difference. If $f: M \rightarrow N$ is a smooth map between smooth manifolds, we let $d f: T M \rightarrow T N$ denote the induced mapping on tangent spaces. The expression $A \sqcup B$ means the disjoint union. A closed manifold means a compact manifold without boundary.

We now introduce some nonstandard notation. If $f: M \rightarrow N$ is a function and $S \subset M$ we will let $f \mid$ denote the restriction $\left.f\right|_{S}$ if S is clear from context. This is useful if S is some complicated expression which would only clutter up a formula and make it more unreadable. If X is a topological space, we let $\mathfrak{c} X$ denote the cone on X, so $\mathfrak{c} X=X \times[0,1] / X \times 0$, the quotient space of $X \times[0,1]$ with $X \times 0$ crushed to a point. If x (or y or z etc.) is a point in \mathbf{R}^{n} then x_{i} (or y_{i} or z_{i}) will denote the i-th coordinate of x. We let \mathbf{R}_{i}^{n} denote the coordinate hyperplane $\left\{x \in \mathbf{R}^{n} \mid x_{i}=0\right\}$.

The end of a proof is marked by a sign thusly:
We have tried to organize long proofs in a hierarchical manner. In the midst of a proof we may make an assertion, which we then proceed to prove. The reader might prefer to skip this proof on first reading or do it as an exercise if she is energetic. The hope is that this will make the overall argument clearer by hiding some of the details. To set off the proof of an assertion from the rest of the proof we mark its end thusly:

Contents

Preface v
List of Figures ix
Chapter I. INTRODUCTION 1

1. Overview 1
2. Stratified Sets 5
3. Ticos 6
4. Resolution Towers 7
Chapter II. ALGEBRAIC SETS 17
5. Basic Properties of Algebraic Sets 17
6. Singularities of Real and Complex Algebraic Sets 22
7. Projective Algebraic Sets 33
8. Grassmannians 37
9. Blowing Up 40
10. Blowing Down 50
11. Algebraic Homology 53
12. Making Smooth Objects Algebraic 57
13. Homology of Blowups 77
14. Isotoping Submanifolds to Algebraic Subsets 85
Chapter III. TICOS 93
15. Some Results about Smooth Functions 93
16. Ticos 95
17. Tico Blowups 104
18. Full Ticos 120
19. Type N Tico Maps 121
20. Submersive Tico Maps 131
21. Micos 133
Chapter IV. RESOLUTION TOWERS 136
22. Definiton of Resolution Towers 136
23. Blowing up Resolution Towers 141
24. Realizations of Resolution Towers 151
Chapter V. ALGEBRAIC STRUCTURES ON RESOLUTION TOWERS 158
25. Making Tico Maps Algebraic 158
26. Nice Charts on Resolution Towers 161
27. Quasialgebraic Towers are Algebraic 167
28. RF Towers are Quasialgebraic 170
Chapter VI. RESOLUTION TOWER STRUCTURES ON ALGEBRAIC SETS 173
29. Uzunblowups and Fullness 174
30. Complex Ticos and Complexifications 176
31. Extending Algebraic Resolution Towers 183
32. Resolution Towers for Algebraic Sets 186
Chapter VII. THE CHARACTERIZATION OF THREE DIMENSIONAL ALGEBRAIC SETS 191
33. Obstructions 193
34. The Cobordism Groups 202
35. Characterization in Dimension 3 213
36. Algebraic Resolution of Real Algebraic Sets in Dimension Three 219
37. Bounding Resolution Towers 225
Bibliography 244
Index 247

List of Figures

I.1.1 A noncompact real algebraic set 2
I.1.2 A_{1} spaces with and without boundary 2
I.1.3 An algebraic set which is not an A_{k}-space 3
I.1.4 A topological resolution 3
I.1.5 A resolution tower for Z 4
I.4.1 A resolution tower 8
I.4.2 Realization of a resolution tower 9
I.4.3 X 10
I.4.4 Tangential intersection 11
I.4.5 $\pi^{-1}\left(X_{1}\right)$ pairwise transverse, but not a tico 12
I.4.6 $\pi^{-1}\left(X_{1}\right)$ now a tico 12
I.4.7 $\pi^{-1}\left(X_{0}\right)$ now a tico 13
II.4.1 Projecting to the normal bundle of L in V 39
II.6.1 Algebraic blowing down 51
II.6.2 Squishing a sphere to a figure 8 52
II.6.3 Squishing a hyperboloid to a parabola 53
II.7.1 V and Y_{j} 56
II.8.1 Making a map algebraic 63
II.8.2 The doubled cobordism 66
II.8.3 The doubled cobordism made algebraic 66
II.8.4 Making an algebraic embedding into an algebraic subset 69
II.8.5 A smooth approximation 69
II.8.6 The cobordism to the algebraic situation 72
II.8.7 The inductive step, reducing the number of nonempty M_{α} 's 73
II.8.8 Detail of the added handle 73
II.8.9 X, the double of T 74
II.8.10 $Y_{i}^{\prime \prime}$ 75
II.8.11 Characterizing Zopen sets with isolated singularities 76
II.8.12 Balls D_{i} making a spine of W 76
II.8.13 $\bigcup S_{i}$ a spine of W_{0} 77
II.8.14 Adding a handle to reduce the number of spheres in ∂W_{i} 77
II.10.1 An almost nonsingular immersion 88
II.10.2 Making an immersion algebraic 90
III.2.1 A tico in the disc 96
IV.1.1 A realization of a resolution tower 138
IV.1.2 A resolution tower 138
IV.1.3 The realization of the resolution tower 138
VII.1.1 Y_{0} 195
VII.1.2 Y_{1} 196
VII.1.3 Y_{2} 196
VII.1.4 Y_{3} 197
VII.2.1 \mathfrak{T}^{\prime} and its resolution 205
VII.2.2 A typical tower in $\mathcal{T R}_{2}$ 206
VII.2.3 Some generators of \mathfrak{N}_{2}^{S} 212
VII.3.1 X and a resolution \mathfrak{T} of $X-K$ 215
VII.3.2 The link L and its induced resolution tower $\mathfrak{T}^{\prime \prime \prime}$ 215
VII.3.3 A resolution tower $\mathfrak{T}^{\prime \prime}$ for $\mathfrak{c} L$ 216
VII.3.4 A resolution tower \mathfrak{T}^{\prime} for X 216
VII.5.1 Pairing up points of V_{1} and V_{12} 226
VII.5.2 The realization of \mathfrak{T} 226
VII.5.3 Starting to make \mathfrak{T} a weak boundary 227
VII.5.4 Handles added until each $T \cap C_{02}$ has at most one point 228
VII.5.5 Handles added until each $T \cap C_{02}$ has one point 228
VII.5.6 Adding a round handle 228
VII.5.7 Resolving the cone on the 0 -skeleton 230
VII.5.8 The first two pieces of V_{2}^{\prime} 232
VII.5.9 The first pieces of V_{3}^{\prime} 233
VII.5.10 Covering a new handle in C_{2} by one in C_{3} 234
VII.5.11 Another type of handle we may add to C_{2} 235
VII.5.12 The involution τ 236
VII.5.13 A handle pair added to C_{2} 237
VII.5.14 Adding a handle to C_{3} which reduces (d, e, f) 238
VII.5.15 Covering with a round handle 239

