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During the academic years 1992-1994, there was a lot of activity on potential theory
at the Department of Mathematics at Uppsala University. The main series of lectures
were as follows:

e A An introduction to potential theory and a survey of minimal thinness and
rarefiedness. (M. Essén)

¢ B Potential theory. (H. Aikawa)

e C Analytic capacity. (V. Eiderman)

e D Lectures on a paper of L.-1. Hedberg [24]. (M. Essén)

¢ E Harmonic measures on fractals (A. Volberg)

These lecture notes contain the lecture series A,B and references for C. The E lec-
tures will appear as department report UUDM 1994:32: Zoltan Balogh, Irina Popovici
and Alexander Volberg, Conformally maximal polynomial-like dynamics and invariant
harmonic measure (to appear, Ergodic Theory and Dynamical Systems).

H. Aikawa spent the Spring semester 1993 in Uppsala. V. Eiderman spent the
Spring semesters 1993 and 1994 here. A. Volberg was in Uppsala during May 1994.
In addition to giving excellent series of lectures, our visitors were also very active
participants in the mathematical life of the department.

Uppsala September 21, 1994

Matts Essén
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