Lecture Notes in Mathematics

Editors: A. Dold, Heidelberg F. Takens, Groningen

Springer Berlin

Berlin Heidelberg New York Barcelona Budapest Hong Kong London Milan Paris Santa Clara Singapore Tokyo Allan Adler S. Ramanan

Moduli of Abelian Varieties

Authors

Allan Adler Cherokee Station P.O. Box 20276 New York, NY 10021, USA e-mail: adler@pulsar.cs.wku.edu

Sundararaman Ramanan Tata Institute of Fundamental Research Homi Bhabha Road 400 005 Mumbai, India e-mail: ramanan@tifrvax.tifr.res.in

Cataloging-in-Publication Data applied for Die Deutsche Bibliothek - CIP-Einheitsaufnahme

Adler, Allan: Moduli of Abelian varieties / Allan Adler ; S. Ramanan. -Berlin ; Heidelberg ; New York ; Barcelona ; Budapest ; Hong Kong ; London ; Milan ; Paris ; Santa Clara ; Singapore ; Tokyo : Springer, 1996 (Lecture notes in mathematics ; 1644) ISBN 3-540-62023-0 NE: Ramanan, Sundararaman:; GT Mathematics Subject Classification (1991): 11D41, 11F27, 11F32, 11F46, 11G05, 11G18, 14-02, 14D20, 14E15, 14J30, 14J35, 14J60, 14K10, 14K25, 14M12, 14M15, 14N05, 14N10, 16W99, 20C33, 20C34

ISSN 0075-8434 ISBN 3-540-62023-0 Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting, reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are liable for prosecution under the German Copyright Law.

© Springer-Verlag Berlin Heidelberg 1996 Printed in Germany

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

Typesetting: Camera-ready T_EX output by the first author SPIN: 10520167 46/3142-543210 - Printed on acid-free paper

Table of Contents

	§0	Introduction	1		
Ch.I		Standard Heisenberg Groups	8		
	§1	Heisenberg Groups	8		
	$\S2$	Representations of Heisenberg Groups	9		
	§3	Some Homomorphisms Between Abelian Groups	10		
	§4	Some Homomorphisms Between Heisenberg Groups	11		
	$\S5$	The Homomorphism $T_{(x,l)}$	12		
	§6	The Linear Operator $\hat{\Omega}_{(x,l)}^{(x,l)}$	13		
	§7	$\Omega_{(x,l)}$ as an Intertwining Operator	14		
	§8	Characterization of the Homomorphism $T_{(x,l)}$	16		
Ch.II		Heisenberg groups of Line Bundles on Abelian Varieties18			
	§9	Heisenberg Groups of Sheaves on Abelian Varieties	18		
	§10	The Mumford Functor	19		
	§11	Strongly Symmetric Line Bundles	20		
	§12	Some Commutative Diagrams in the Category \mathcal{A}	23		
	§13	Application of the Mumford Functor to the Preceding Dia	-		
	§14	Characterization of $3\bar{3}, 3\bar{3}', h_{(s_1,id)}$ and $h_{(s_2,id)}$	29		
Ch.III		Theta Structures and the Addition Formula	31		
	$\S{15}$	Symmetric Theta Structures	31		
	§16	The Arf Invariant and the Existence of Symmetric			
	0 -	Theta Structures	33		
	$\S17$	The Addition Formula and the Duplication Formula	42		
	§18	The Fundamental Relation, Product Formula and	14		
	310	Inversion Formula	47		
			11		
Ch.IV		Geometry of the Fundamental Relations	52		
	§19	Special Cases of the Fundamental Relation Among	02		
	J~0	Theta Constants	52		
		Case 1: L has nontrivial Arf invariant	53		
		Case 2: L has trivial Arf invariant	56		
	§20	The Geometry of the Modular Curve Via the	50		
	320	Fundamental Relation	50		
	$\S{21}$		58		
	921	Level 3 Structure and Invariants of Symplectic Groups	68		
Ch.V	000	Invariant Theory, Arithmetic and Vector Bundles	77		
	§22	On the Mysterious Role of Invariant Theory	77		
	$\S{23}$	The Arithmetic of the Modular Curve Deduced from			
	_	Its Equations	83		
	$\S{24}$	Invariant Vector Bundles and Modular Forms of			
		Fractional Weight	94		

App.I		"On the Weil Representation," by A.Adler	107		
	005	Introduction	107		
	§25	Generalization of the Metaplectic Group	107		
	§26	The Weil Representation of Finite Symplectic Groups	109		
	$\S{27}$	Explicit Form of the Weil Representation	110		
App.II		"Modular Forms of Weight $4/5$ for $\Gamma(11)$," by A.Adler113			
	§28	Introduction	113		
	§29	Representations and Invariants of $PSL_2(\mathbf{F}_{11})$	113		
	§30	Invariant Line Bundles	116		
	§31	Construction of Modular forms of weight $4/5$	117		
	§32	Complements	121		
App.III		"Invariants and $X(11)$," by A.Adler	122		
	$\S{33}$	Introduction	122		
	$\S{34}$	The curve of degree 20	122		
	§35	The curve of degree 50	123		
App.IV		"On the Hessian of a cubic threefold," by A.Adler	125		
	§36	Introduction	125		
	$\S{37}$	Singular locus vs. rank ≤ 3 locus	127		
	$\S{38}$	Generalization of Klein's z-curve	130		
	$\S{39}$	Desingularization of the Hessian	137		
	$\S{40}$	Applications to mirror symmetry	138		
	$\S{41}$	The search for a quaternionic Hilbert modular threefold	139		
	$\S{42}$	Techniques of Gordan and Noether	142		
App.V		"New abelian varieties associated to			
		cubic threefolds," by A.Adler	145		
	§43	Introduction	145		
	$\S{44}$	The idea of the proof of simplicity	148		
	$\S{45}$	Standard results about schemes	150		
	$\S{46}$	The scheme-theoretic argument	155		
	§47	A canonical form for quinary cubics	163		
	§48	Vector bundles on cubic threefolds	166		
	§49	The jumping lines of $E(M)$	167		
	$\S{50}$	The associated quartic fourfold in \mathbf{P}^5	173		
	$\S{51}$	Generalization of Klein's A-curve of level 11	176		
	$\S{52}$	The jacobian variety of an A-curve of a generic			
	A F -	cubic threefold	184		
	§53	The fundamental intertwining operator revisited	184		
		References	186		
		Index of Notation	192		
		Subject Index	194		