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The problem of distinguishing prime numbers from
composites, and of resolving composite numbers
into their prime factors, is one of the most impor
tant and useful in all of arithmetic.... The dignity
of science seems to demand that every aid to the
solution of such an elegant and celebrated problem
be zealously cultivated.
Carl Friedrich Gauss
Disquisiiiones Arithmeticae
ART. 329 (1801) (translation from [Kn])

ABSTRACT

The existence of a random polynomial time algorithm for the set of primes
is proved. The techniques used are from algebraic geometry, algebraic number
theory and analytic number theory. Particular use is made of the theory of
two dimensional Abelian varieties over finite fields. The result complements the
well known result of Solovay and Strassen that there exists a random polynomial
time algorithm for the set of composites.
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