Contents

Va	luat	ion systems and consequence	
$\mathbf{re}^{\mathbf{l}}$	latio	ns	1
1	Intr	oduction	2
	1.1	Logics and computer science	2
	1.2	Summary	8
2	Valuation systems		9
	2.1	Satisfaction	9
	2.2	Valuation systems	13
	2.3	Modal logic and possible worlds	21
	2.4	Predicate languages	25
	2.5	Summary	30
3	Con	sequence relations and entailment relations	30
	3.1	Consequence relations	31
	3.2	Entailment relations	34
	3.3	The systems C and $S4$	35
	3.4	Levels of implication	38
	3.5	Consequence operator	39
	3.6	Summary	40
4	Proof theory and presentations		40
	4.1	Hilbert presentations	41
	4.2	Natural deduction presentations	45
	4.3	Natural deduction in sequent style	51
	4.4	Intuitionistic logic	
	4.5	- 1	57
	4.6		62
	4.7	Properties of presentations	64
5	Some further topics		66
	5.1	Valuation systems for I	67
	5.2	1 0	69
	5.3	1 1	71
	5.4	Consistency	74
Re	ecur	sion theory	79
0	Introduction		80
	0.1	Opening remarks	80
	0.2	A taster	81
	0.3	Contents of the chapter	84

Contents

1	Lan	guages and notions of computability	84
	1.1	Data types and coding	85
	1.2	The imperative paradigm	87
	1.3	The functional paradigm	99
	1.4	Recursive functions	109
	1.5	Universality	113
2	Con	nputability and non-computability	124
	2.1	Non-computability	124
	2.2	Computability	127
	2.3	Recursive and recursively enumerable sets	129
	2.4	The $S-m-n$ theorem and partial evaluation	133
	2.5	More undecidable problems	135
	2.6	Problem reduction and r.e. completeness	136
3	Ind	uctive definitions	139
	3.1	Operators and fixed points	140
	3.2	The denotational semantics of the functional	
		language FL	149
	3.3	Ordinals	156
	3.4	The general case	169
4	Rec	ursion theory	172
	4.1	•	173
	4.2	Acceptable programming systems	176
	4.3	Recursive operators	181
	4.4	Inductive definitions and logics	183
Uı	nive	rsal algebra	189
1	Intr	oduction	190
	1.1	What is universal algebra?	190
	1.2	Universal algebra in mathematics and computer	
		science	191
	1.3	Overview of the chapter	192
	1.4	Historical notes	192
	1.5	Acknowledgements	195
	1.6	Prerequisites	196
2	Exa	mples of algebras	196
	2.1	Some basic algebras	197
	2.2	Some simple constructions	207
	2.3	Syntax and semantics of programs	210
	2.4	Synchronous concurrent algorithms	215
	2.5	Algebras and the modularisation of software	220
3	Alg	ebras and morphisms	220
	3.1	Signatures and algebras	220
	3.2	Subalgebras	234

viii

;

	Contents	ix
	3.3 Congruences and quotient algebras	244
	3.4 Homomorphisms and isomorphisms	260
	3.5 Direct products	275
	3.6 Abstract data types	287
4	Constructions	287
	4.1 Subdirect products, residual and local properties	s 288
	4.2 Direct and inverse limits	298
	4.3 Reduced products and ultraproducts	321
	4.4 Local and residual properties and approximation	n 332
	4.5 Remarks on references	336
5	Classes of algebras	337
	5.1 Free, initial and final algebras	338
	5.2 Equational logic	351
	5.3 Equational Horn logic	369
	5.4 Specification of abstract data types	392
	5.5 Remarks on references	396
6	Further reading	397
	6.1 Universal algebra	398
	6.2 Model theory	398
Ba	asic category theory	413
1	Categories, functors and natural transformations	416
	1.1 Types, composition and identities	416
	1.2 Categories	418
	1.3 Relating functional calculus and category theory	424
	1.4 Compositionality is functorial	427
	1.5 Natural transformations	433
2	On universal definitions: products, disjoint sums a	nd
	higher types	437
	2.1 Product types	437
	2.2 Coproducts	443
	2.3 Higher types	446
	2.4 Reasoning by universal arguments	451
	2.5 Another 'universal definition': primitive recursion	on 456
	2.6 The categorical abstract machine	457
3	Universal problems and universal solutions	460
	3.1 On observation and abstraction	461
	3.2 A more categorical point of view	465
	3.3 Universal morphisms	470
	3.4 Adjunction	473
	3.5 On generation	475
	3.6 More examples for separation and generation	481

۰

Contents

4	Elen	nents and beyond	492
	4.1	Variable elements, variable subsets and representable	
		functors	492
	4.2	Yoneda's heritage	498
	4.3	Towards an enriched category theory	500
5	Data	a structures	511
	5.1	Subtypes	511
	5.2	Limits	516
	5.3	Colimits	526
6	Univ	versal constructions	535
	6.1	The adjoint functor theorem	536
	6.2	Generation as partial evaluation	541
	6.3	Left Kan extensions, tensors and coends	545
	6.4	Separation by testing	551
	6.5	On bimodules and density	553
7		omatizing programming languages	559
	7.1	Relating theories of λ -calculus	559
	7.2	Type equations and recursion	566
	7.3	Solving recursive equations	574
8	~	ebra categorically	578
	8.1		578
	8.2		588
	8.3	Monads	593
9		the categorical interpretation of calculi	603
		Category theory as proof theory	603
	9.2	•	605
		Theories of equality	612
10	9.4	Type theories	619
10		ort of conclusion	- 632
11		rature	633
		Textbooks	633
	11.2	References	634
То	polo	рgy	641
1	Obs	ervable properties	642
2	Examples of topological spaces		646
-	2.1	Sierpinski space	646
	2.2	Scott Topology	646
	2.3	Spaces of maximal elements. Cantor space	647
	2.4	Alexandroff topology	647
	2.5	Stone spaces	648
	2.6	Spectral spaces	649
	2.7	The reals	650

х

	Contents	xi
3	Alternative formulations of topology	653
	3.1 Closed sets	653
	3.2 Neighbourhoods	654
	3.3 Examples	655
	3.4 Closure operators	656
	3.5 Convergence	660
4	Separation, continuity and sobriety	663
	4.1 Separation conditions	663
	4.2 Continuous functions	665
	4.3 Predicate transformers and sobriety	668
	4.4 Many-valued functions	675
5	Constructions: new spaces from old	681
	5.1 Postscript: effectiveness and representation	690
6	Metric Spaces	698
	6.1 Basic definitions	699
	6.2 Examples	702
	6.3 Completeness	706
	6.4 Topology and metric	713
	6.5 Constructions	719
	6.6 A note on uniformities	724
7	Compactness	
	7.1 Compactness and finiteness	727
	7.2 Spectral spaces	730
	7.3 Positive and negative information: patch topology	733
	7.4 Hyperspaces	736
	7.5 Tychonoff's theorem	738
	7.6 Locally compact spaces	739
	7.7 Function spaces	744
8	Appendix	751
м	odel theory and computer science:	
Aı	n appetizer	763
1	Introduction	764
2	The set theoretic modelling of syntax and semantics	766
	2.1 First order structures	767
	2.2 The choice of the vocabulary	768
	2.3 Logics	769
3	Model theory and computer science	770
	3.1 Computer science	770
	3.2 The birth of model theory	771
	3.3 Definability questions	772
	3.4 Preservation theorems	773
	3.5 Disappointing ultraproducts	774

Contents

	3.6	Complete theories and elimination of quantifiers	774
	3.7		775
	3.8	Beyond first order logic	777
	3.9	The hidden method	778
	3.10	0–1 Laws	779
4	Pres	servation theorems	780
	4.1	Horn formulas	780
5	Fast	growing functions	782
	5.1	Non-provability results in second order arithmetic	782
	5.2	Non-provability in complexity theory	782
	5.3	Model theory of fast growing functions	783
6	Elin	nination of quantifiers	784
	6.1	Computer aided theorem proving in classical	
		mathematics	785
	6.2	Tarski's theorem	787
	6.3	Elementary geometry	789
	6.4	Other theories with elimination of quantifiers	790
7	Con	aputable logics over finite structures	790
	7.1	Computable logics	790
	7.2	Computable quantifiers	793
	7.3	Computable predicate transformers	794
	7.4	L-Reducibility	796
	7.5	Logics capturing complexity classes	797
8	Ehr	enfeucht–Fraïssé games	798
	8.1	The games	798
	8.2	Completeness of the game	801
	8.3	Second order logic and its sublogics	802
	8.4	More non-definability results	802
	8.5	The games and pumping lemmas	805
9	Cor	clusions	805
Aι	ıtho	r index	815
Index			817

1