Stephen Abbott

Understanding Analysis

With 32 Illustrations

Stephen Abbott Mathematics Department Middlebury College Middlebury, VT 05753 USA abbott@middlebury.edu

Editorial Board

S. Axler Mathematics Department San Francisco State University San Francisco, CA 94132 USA axler@sfsu.edu F.W. Gehring Mathematics Department East Hall University of Michigan Ann Arbor, MI 48109 USA fgehring@math.lsa. umich.edu K.A. Ribet Mathematics Department University of California at Berkeley Berkeley, CA 94720-3840 USA ribet@math.berkeley.edu

Mathematics Subject Classification (2000): 2601

Library of Congress Cataloging-in-Publication Data Abbott, Stephen, 1964-Understanding analysis / Stephen Abbott. p. cm. – (Undergraduate texts in mathematics) Includes bibliographical references and index. 1. Mathematical analysis. I. Title. II. Series. QA300 .A18 2001 515-dc21 00-058308 ISBN 978-1-4419-2866-5 ISBN 978-0-387-21506-8 (eBook) Printed on acid-free paper. DOI 10.1007/978-0-387-21506-8 © 2001 Springer Science+Business Media New York Originally published by Springer Science+Business Media, Inc in 2001 Softcover reprint of the hardcover 1st edition 2001

All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media New York), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.

The use in this publication of trade names, trademarks, service marks and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

9876

springeronline.com

Contents

	Pre	face	v	
1	The Real Numbers			
	1.1	Discussion: The Irrationality of $\sqrt{2}$	1	
	1.2	Some Preliminaries	4	
	1.3	The Axiom of Completeness	13	
	1.4	Consequences of Completeness	18	
	1.5	Cantor's Theorem	29	
	1.6	Epilogue	33	
2	Sequences and Series			
	2.1	Discussion: Rearrangements of Infinite Series	35	
	2.2	The Limit of a Sequence	38	
	2.3	The Algebraic and Order Limit Theorems	44	
	2.4	The Monotone Convergence Theorem and a First Look at		
		Infinite Series	50	
	2.5	Subsequences and the Bolzano–Weierstrass Theorem	55	
	2.6	The Cauchy Criterion	58	
	2.7	Properties of Infinite Series	62	
	2.8	Double Summations and Products of Infinite Series	69	
	2.9	Epilogue	73	
3	Bas	ic Topology of R	75	
	3.1	Discussion: The Cantor Set	75	
	3.2	Open and Closed Sets	78	
	3.3	Compact Sets	84	
	3.4	Perfect Sets and Connected Sets	89	
	3.5	Baire's Theorem	94	
	3.6	Epilogue	96	
4	Functional Limits and Continuity			
	4.1	Discussion: Examples of Dirichlet and Thomae	99	
	4.2	Functional Limits	103	
	4.3	Combinations of Continuous Functions	109	

	$4.4 \\ 4.5 \\ 4.6 \\ 4.7$	Continuous Functions on Compact Sets	$114 \\ 120 \\ 125 \\ 127$
5	The 5.1	Derivative Discussion: Are Derivatives Continuous?	129 129
	5.2	Derivatives and the Intermediate Value Property	131
	5.3	The Mean Value Theorem	137
	5.4	A Continuous Nowhere-Differentiable Function	144
	5.5	Epilogue	148
6	Seq	uences and Series of Functions	151
	6.1	Discussion: Branching Processes	151
	6.2	Uniform Convergence of a Sequence of Functions	154
	6.3	Uniform Convergence and Differentiation	164
	6.4	Series of Functions	167
	6.5	Power Series	169
	6.6	Taylor Series	176
	6.7	Epilogue	181
7	The	Riemann Integral	183
	7.1	Discussion: How Should Integration be Defined?	183
	7.2	The Definition of the Riemann Integral	186
	7.3	Integrating Functions with Discontinuities	191
	7.4	Properties of the Integral	195
	7.5	The Fundamental Theorem of Calculus	199
	7.6	Lebesgue's Criterion for Riemann Integrability	203
	7.7	Epilogue	210
8	Ado	litional Topics	213
	8.1	The Generalized Riemann Integral	213
	8.2	Metric Spaces and the Baire Category Theorem	222
	8.3	Fourier Series	228
	8.4	A Construction of \mathbf{R} From \mathbf{Q}	243
	Bib	liography	251
	Ind	ex	253