R. Abraham J.E. Marsden T. Ratiu

Manifolds, Tensor Analysis, and Applications

Second Edition

Ralph Abraham Department of Mathematics University of California— Santa Cruz Santa Cruz, CA 95064 USA Jerrold E. Marsden Control and Dynamical Systems, 107-81 California Institute of Technology Pasadena, CA 91125 USA Tudor Ratiu Department of Mathematics University of California— Santa Cruz Santa Cruz, CA 95064 USA

Editors:

J.E. Marsden Control and Dynamical Systems, 107-81 California Institute of Technology Pasadena, CA 91125 USA L. Sirovich Division of Applied Mathematics Brown University Providence, RI 02912 USA

Mathematics Subject Classifications (1991): 34-01, 58-01, 70-01, 76-01, 93-01

Library of Congress Cataloging-in-Publication Data
Abraham, Ralph
Manifolds, tensor analysis, and applications, Second Edition
(Applied Mathematical Sciences; v. 75)
Bibliography: p. 631
Includes index.
I. Global analysis (Mathematics) 2. Manifolds (Mathematics) 3. Calculus of tensors.
I. Marsden, Jerrold E. II. Ratiu, Tudor S. III. Title. IV. Series.
QA614.A28 1983514.382-1737
ISBN 978-1-4612-6990-8 ISBN 978-1-4612-1029-0 (eBook)
DOI 10.1007/978-1-4612-1029-0

First edition published by Addison-Wesley Publishing Company © 1983

© 1988 by Springer Science+Business Media New York Originally published by Springer-Verlag, New York Inc. in 1988 Softcover reprint of the hardcover 2nd edition 1988

All rights reserved. No part of this book may be translated or reproduced in any form without written permission from Springer Science+Business Media, LLC.

987654

ISBN 978-1-4612-6990-8

Contents

Preface	v
Background Notation	vii
CHAPTER 1	1
Topology	1
1.1 Topological Spaces	2 9
1.2 Metric Spaces	14
1.3 Continuity	14
1.4 Subspaces, Products, and Quotients1.5 Compactness	24
1.6 Connectedness	31
1.7 Baire Spaces	37
1.7 Dane Spaces	51
CHAPTER 2 Repeate Spaces and Differential Calculus	40
Banach Spaces and Differential Calculus 2.1 Banach Spaces	40 40
2.1 Balacti Spaces 2.2 Linear and Multilinear Mappings	40 56
2.3 The Derivative	75
2.4 Properties of the Derivative	83
2.5 The Inverse and Implicit Function Theorems	116
2.5 The involve and implicit Panetion Theorems	110
CHAPTER 3 Manifolds and Vector Bundles	141
3.1 Manifolds	141
	141
3.2 Submanifolds, Products, and Mappings3.3 The Tangent Bundle	150
3.4 Vector Bundles	167
3.5 Submersions, Immersions and Transversality	196
5.5 Submersions, minersions and mansversancy	190
CHAPTER 4 Vector Fields and Dynamical Systems	238
Vector Fields and Dynamical Systems 4.1 Vector Fields and Flows	238
4.1 Vector Fields and Flows 4.2 Vector Fields as Differential Operators	258
4.3 An Introduction to Dynamical Systems	203
4.4 Frobenius' Theorem and Foliations	326
4.4 Hoochus Theorem and Fonations	520
CHAPTER 5	220
Tensors	338
5.1 Tensors in Linear Spaces	338
5.2 Tensor Bundles and Tensor Fields	349
5.3 The Lie Derivative: Algebraic Approach	359
5.4 The Lie Derivative: Dynamic Approach 5.5 Partitions of Unity	370 377
J.J. FARITIONS OF UNITY	3//

CHAPTER 6

Differential Forms	392
6.1 Exterior Algebra	392
6.2 Determinants, Volumes, and the Hodge Star Operator	402
6.3 Differential Forms	417
6.4 The Exterior Derivative, Interior Product, and Lie Derivative	423
6.5 Orientation, Volume Elements, and the Codifferential	450
CHAPTER 7	
Integration on Manifolds	464
7.1 The Definition of the Integral	464
7.2 Stokes' Theorem	476
7.3 The Classical Theorems of Green, Gauss, and Stokes	504
7.4 Induced Flows on Function Spaces and Ergodicity	513
7.5 Introduction to Hodge-deRham Theory and Topological Applications of	
Differential Forms	538
CHAPTER 8	
Applications	560
8.1 Hamiltonian Mechanics	560
8.2 Fluid Mechanics	584
8.3 Electromagnetism	599
8.3 The Lie-Poisson Bracket in Continuum Mechanics and Plasma Physics	609
8.4 Constraints and Control	624
References	631
Index	643

Supplementary Chapters—Available from the authors as they are produced

S-1 Lie Groups

S-2 Introduction to Differential Topology

S-3 Topics in Riemannian Geometry

Background Notation

The reader is assumed to be familiar with the usual notations of set theory such as \in , \subset , \cup , \cap and with the concept of a mapping. If A and B are sets and if f: A \rightarrow B is a mapping, we write a \mapsto f(a) for the effect of the mapping on the element of a \in A; "iff" stands for "if and only if" (= "if" in definitions). Other notations we shall use without explanation include the following:

♦	end of an example or remark
	end of a proof
▼	proof of a lemma is done, but the proof
	of the theorem goes on
\mathbb{R}, \mathbb{C}	real, complex numbers
\mathbb{Z}, \mathbb{Q}	integers, rational numbers
$A \times B$	Cartesian product
$\mathbb{R}^n, \mathbb{C}^n$	Euclidean n-space, complex n-space
$(x^1, \ldots, x^n) \in \mathbb{R}^n$	point in \mathbb{R}^n
$A \subset B$	set theoretic containment (means same as
	$A \subseteq B$)
$A \searrow B$	set theoretic difference
I or Id	identity map
$f^{-1}(B)$	inverse image of B under f
$\Gamma_{f} = \{(x, f(x)) \mid x \in \text{domain of } f\}$	graph of f
inf A	infinimum (greatest lower bound) of the set $A \subset \mathbb{R}$
sup A	supremum (least upper bound) of $A \subset \mathbb{R}$
$e_1,, e_n$	basis of an n-dimensional vector space
ker T, range T	kernel and range of a linear transformation T
D _r (m)	open ball about m of radius r
B _r (m)	closed ball of radius r (also denoted $\overline{D}_{r}(m)$).