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Background Notation 

The reader is assumed to be familiar with the usual notations of set theory 
such as E, C, U, n and with the concept of a mapping. If A and B are sets 
and if f: A~B is a mapping, we write a ~ f(a) for the effect of the mapping 
on the element of a E A; "iff" stands for "if and only if" (= "if" in definitions). 
Other notations we shall use without explanation include the following: 

• • 

lR,e 
.z,{Jl 
A x B 
IR", e" 
(Xl, ... , x") E IR" 
AcB 

A",B 
I or Id 
f- I(B) 

rr = {(x,f(x)) I x E domain of f} 
inf A 

sup A 
e l , ... , en 
ker T, range T 

D,(m) 
B,(m) 

end of an example or remark 
end of a proof 
proof of a lemma is done, but the proof 

of the theorem goes on 
real, complex numbers 
integers, rational numbers 
Cartesian product 
Euclidean n-space, complex n-space 
point in IR" 
set theoretic containment (means same as 

A <: B) 
set theoretic difference 
identity map 
inverse image of B under f 
graph of f 
infinimum (greatest lower bound) of the 

set A c IR 
supremum (least upper bound) of A c IR 
basis of an n-dimensional vector space 
kernel and range of a linear 

transformation T 
open ball about m of radius r 
closed ball of radius r (also denoted 

D,(m)). 


