Kenneth Ireland Michael Rosen

A Classical Introduction to Modern Number Theory

Second Edition

Kenneth Ireland (deceased)

Michael Rosen Department of Mathematics Brown University Providence, RI 02912 USA

Editorial Board		
S. Axler	F.W. Gehring	K.A. Ribet
Mathematics Department	Mathematics Department	Department of Mathematics
San Francisco State	East Hall	University of California
University	University of Michigan	at Berkeley
San Francisco, CA 94132	Ann Arbor, MI 48109	Berkeley, CA 94720-3840
USA	USA	USA

With 1 illustration.

Mathematics Subject Classification (2000): 11-01, 11-02

Library of Congress Cataloging-in-Publication Data Ireland, Kenneth F. A classical introduction to modern number theory / Kenneth Ireland, Michael Rosen.—2nd ed. p. cm.—(Graduate texts in mathematics; 84) Includes bibliographical references and index. 1. Number theory. I. Rosen, Michael I. II. Title. III. Series. QA241.I667 1990 512.7—dc20 90-9848

Printed on acid-free paper.

"A Classical Introduction to Modern Number Theory" is a revised and expanded version of "Elements of Number Theory" published in 1972 by Bogden and Quigley, Inc., Publishers.

©1972, 1982, 1990 Springer Science+Business Media New York Originally published by Springer-Verlag New York, Inc. in 1990.

All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher Springer Science+Business Media, LLC, except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use of general descriptive names, trade names, trademarks, etc., in this publication, even if the former are not especially identified, is not to be taken as a sign that such names, as understood by the Trade Marks and Merchandise Marks Act, may accordingly be used freely by anyone.

987

Springer-Verlag is a part of Springer Science+Business Media

ISBN 978-1-4419-3094-1 ISBN 978-1-4757-2103-4 (eBook) DOI 10.1007/978-1-4757-2103-4

Contents

Preface to the Second Edition Preface	v vii
CHAPTER 1 Unique Eactorization	1
§1 Unique Factorization in \mathbb{Z}	1
83 Unique Factorization in a Principal Ideal Domain	8
§4 The Rings $\mathbb{Z}[i]$ and $\mathbb{Z}[\omega]$	12
Chapter 2	
Applications of Unique Factorization	17
§1 Infinitely Many Primes in Z	17
§2 Some Arithmetic Functions	18
$3 \Sigma 1/p$ Diverges	21
§4 The Growth of $\pi(x)$	22
Chapter 3	00
Congruence	28
§1 Elementary Observations	28
$2 \text{ Congruence in } \mathbb{Z}$	29
\$3 The Congruence $ax \equiv b(m)$	31
s4 The Chinese Remainder Theorem	
Chapter 4 The Structure of $L((7/2))$	30
The Structure of $U(\mathbb{Z}/n\mathbb{Z})$	57
\$1 Primitive Roots and the Group Structure of $U(\mathbb{Z}/n\mathbb{Z})$	39
§2 <i>n</i> th Power Residues	43
Chapter 5	50
Quadratic Reciprocity	50
\$1 Quadratic Residues	50
\$2 Law of Quadratic Reciprocity	53
§3 A Proof of the Law of Quadratic Reciprocity	58

Chapter 6	
Quadratic Gauss Sums	66
 \$1 Algebraic Numbers and Algebraic Integers \$2 The Quadratic Character of 2 \$3 Quadratic Gauss Sums \$4 The Sign of the Quadratic Gauss Sum 	66 69 70 73
Chapter 7 Finite Fields	79
§1 Basic Properties of Finite Fields§2 The Existence of Finite Fields§3 An Application to Quadratic Residues	79 83 85
Chapter 8	

Gauss and Jacobi Sums	88
§1 Multiplicative Characters	88
§2 Gauss Sums	91.
§3 Jacobi Sums	92
§4 The Equation $x^n + y^n = 1$ in F_p	97
§5 More on Jacobi Sums	98
§6 Applications	101
§7 A General Theorem	102

Chapter 9	
Cubic and Biquadratic Reciprocity	108
\$1 The Ring $\mathbb{Z}[\omega]$	109
§2 Residue Class Rings	111
\$3 Cubic Residue Character	112
§4 Proof of the Law of Cubic Reciprocity	115
\$5 Another Proof of the Law of Cubic Reciprocity	117
§6 The Cubic Character of 2	118
§7 Biquadratic Reciprocity: Preliminaries	119
§8 The Quartic Residue Symbol	121
§9 The Law of Biquadratic Reciprocity	123
\$10 Rational Biquadratic Reciprocity	127
§11 The Constructibility of Regular Polygons	130
\$12 Cubic Gauss Sums and the Problem of Kummer	131

Chapter 10	
Equations over Finite Fields	138
\$1 Affine Space, Projective Space, and Polynomials	138
\$2 Chevalley's Theorem	143
\$3 Gauss and Jacobi Sums over Finite Fields	145

Chapter 11	
The Zeta Function	151
§1 The Zeta Function of a Projective Hypersurface	151
\$2 Trace and Norm in Finite Fields	158
\$3 The Rationality of the Zeta Function Associated to	
$a_0 x_0^m + a_1 x_1^m + \cdots + a_n x_n^m$	161
§5 The Last Entry	165
Chapter 12	
Algebraic Number Theory	172
§1 Algebraic Preliminaries	172
\$2 Unique Factorization in Algebraic Number Fields	174
\$3 Ramification and Degree	181
CHAPTER 13 Overdentia and Cualatamia Fields	100
Quadratic and Cyclotomic Fields	100
§1 Quadratic Number Fields	188
§3 Quadratic Reciprocity Revisited	193
Chapter 14	
The Stickelberger Relation and the Eisenstein Reciprocity Law	203
§1 The Norm of an Ideal	203
§2 The Power Residue Symbol	204
\$3 The Stickelberger Relation	207
84 The Proof of the Eisenstein Reciprocity I aw	209
§6 Three Applications	213
Chapter 15	
Bernoulli Numbers	228
§1 Bernoulli Numbers; Definitions and Applications	228
\$2 Congruences Involving Bernoulli Numbers	234
§3 Herbrand's Theorem	241
Dirichlet L-functions	249
81 The Zeta Function	249
§2 A Special Case	251
§3 Dirichlet Characters	253
§4 Dirichlet L-functions	255
\$5 The Key Step	257
so Evaluating $L(s, \chi)$ at Negative integers	201

CHAPTER 17 Diophantine Equations	260
Al Generalities and First Examples	209
\$2 The Method of Descent	269
§3 Legendre's Theorem	271
§4 Sophie Germain's Theorem	272
\$5 Pell's Equation	276
§6 Sums of Two Squares	278
9/ Sums of Four Squares	280
so The Fermal Equation: Exponent 3 89 Cubic Curves with Infinitely Many Pational Points	284
\$10 The Equation $v^2 = x^3 + k$	287
\$11 The First Case of Fermat's Conjecture for Regular Exponent	200
\$12 Diophantine Equations and Diophantine Approximation	292
Chapter 18	207
	297
§1 Generalities	297
$\frac{92}{3}$ Local and Global Zeta Functions of an Elliptic Curve	301
$85 y^2 - x^2 + D$, the Local Case $84 y^2 = x^3 - Dx$ the Local Case	304
\$5 Hecke L-functions	300
$\frac{1}{2} 6 y^2 = x^3 - Dx$, the Global Case	310
$\sqrt[8]{7} y^2 = x^3 + D$, the Global Case	312
§8 Final Remarks	314
CHAPTER 19 The Mordell Weil Theorem	210
	519
\$1 The Addition Law and Several Identities \$2 The Group E/2E	320
82 The Group E/2E 83 The Weak Dirichlet Unit Theorem	323
§4 The Weak Mordell–Weil Theorem	320
§5 The Descent Argument	330
Chapter 20	
New Progress in Arithmetic Geometry	339
§1 The Mordell Conjecture	340
\$2 Elliptic Curves	343
§3 Modular Curves	345
§4 Heights and the Height Regulator	348
\$6 Applications to Gauss's Class Number Conjecture	358
Selected Hints for the Exercises	367
Bibliography	375
Index	385