Contents

1 INTRODUCTION

THIRODOCTION	-
1.1 General	1
1.2 The existing conditions	1
References	9
2 GROUND IMPROVEMENT BY VERTICAL DRAINS	11
2.1 General	11
2.2 Preloading	13
2.3 Sand drains	14
2.4 Characteristics of prefabricated drains	15
2.5 Consolidation with vertical drains	18
2.6 Drain properties	20
2.7 Drain influence zone	22
2.8 Well-resistance	22
2.9 Smear effects and disturbances	23
2.10 Ratio of horizontal to vertical permeability	26
2.11 Coefficient of horizontal consolidation	30
2.12 Parameter effects on consolidation time	33
2.13 Rate of consolidation	33
2.14 Selection of drain type	33
2.15 Filter criteria	36
2.16 Geotextile filter criterion	37
2.17 Case records of sand drains on soft Bangkok clay	38
2.18 Case records of prefabricated drains on soft Bangkok clay	42
2.19 Conclusions	51
References	52
3 GROUND IMPROVEMENT USING GRANULAR PILES	57
3.1 General	57
3.2 Methods of granular pile construction	57

Improvement	techniques	of soft	groun
	Improvement	Improvement techniques	Improvement techniques of soft

	4111	and the same of any of the same	
	3.3	Engineering behavior of composite ground	61
	3.4	Ultimate bearing capacity of single, isolated granular piles	64
	3.5	Ultimate bearing capacity of granular pile groups	66
	3.6	Settlement of the composite ground	69
	3.7	Slope stability of the composite ground	69
	3.8	Rate of primary consolidation settlement	75
	3.9	Strength increase of clay due to consolidation	76
	3.10	Secondary settlement	76
	3.11	Full scale load tests on granular piles	77
	3.12	Test embankment on granular piles	79
	3.13	Performance of granular piles under embankment loading	83
		Model infrastructure projects on soft ground	85
	3.15	Future outlook for granular piles	86
		Granular piles in combination with other soil improvement	
		techniques	89
	3.17	Conclusions	93
R	eferen	ces	94
A	ppend	lix	96
4	LIM	E/CEMENT DEEP MIXING METHOD	99
	4.1	General	99
	4.2	Method of construction and subsequent soil reactions	99
	4.3	Relevant characteristics of soft Bangkok clay	100
	4.4	Effects of quicklime, natural water content, salt and organic contents	101
	4.5	Dry jet mixing method	103
		Wet jet mixing method	104
	4.7	Lime/cement stabilization of soft Bangkok clay	106
	4.8	Test embankment on DMM improved soft Bangkok clay	107
	4.9	Calculation methods for lime columns	108
	4.10	Calculation methods for deep cement mixing (DCM)	121
	4.11	Conclusions	127
R	eferer	nces	128
5		CHANICALLY STABILIZED EARTH (MSE)	
		SANKMENTS/WALLS	131
		General	131
	5.2	Relevance to development	132
	5.3	MSE embankment/wall on soft ground	133
	5.4	Design criteria for MSE structures	135
	5.5	Theoretical background for design MSE structures	135
	5.6	Pullout resistance of steel grid in poor quality backfill	152
	5.7	The behavior of MSE structures on soft ground	172
	5.8	Modelling of MSE structures on soft ground	179

	5.9	Finite element results of MSE wall/embankment on soft grou	nd	194
	5.10	Present and future outlook of MSE system		214
	5.11	Conclusions		216
References			216	
I	ndex			221

Contents VII