Virtual Element Methods in Engineering Sciences

Virtual Element Methods in Engineering Sciences

Peter Wriggers

Institute for Continuum Mechanics
Leibniz University Hannover
Garbsen, Germany

Blaž Hudobivnik
Institute of Continuum Mechanics
Leibniz University Hannover
Garbsen, Germany

Fadi Aldakheel
Institute of Mechanics and Computational Mechanics
Leibniz University Hannover
Hannover, Germany

ISBN 978-3-031-39254-2 ISBN 978-3-031-39255-9 (eBook) https://doi.org/10.1007/978-3-031-39255-9

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2024

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Paper in this product is recyclable.

Preface

The idea to write this book, related to engineering applications of the new virtual element method, occurred to us when the lock-down during the Coronavirus pandemic started. There was suddenly time to concentrate at home on an aggregation of work that we had done together with my group and colleagues. It all started in 2016 after having heard several inspiring talks by Franco Brezzi, his wife Donatella Marini and Lourenco Beirão da Veiga on the new virtual element method. It was immediately clear that this methodology might have advantages for numerical solution schemes in different applications, especially in the nonlinear range.

In 2016, we had first discussions on the basis of the virtual element method and how to implement it with Daya Reddy who stayed at the institute with an award from the Alexander von Humboldt Foundation. The idea was to use virtual elements for contact with the advantage that even for non-matching meshes a node to node formulation of contact was possible. Together with Wilhelm Rust we derived a contact discretization and algorithm based on virtual elements, first for frictionless and later for frictional contact in large strain applications. A work to be continued with our colleagues from Italy, Lourenco Beirão da Veiga and Edoardo Artioli for curved virtual elements. A contribution to three-dimensional contact is due to Mertcan Cihan who has developed in his dissertation the complex projection procedures needed in contact discretizations for three-dimensions when using virtual elements. Also Alfredo Gay Neto from the University of Sao Paulo, a former Humboldt fellow in our institute, contributed to contact formulations within the virtual element method by integrating three-dimensional virtual elements for finite elastic strains as single flexible particles into his discrete element code.

With Daya we tried to understand finite strain problems in 2017 and got some new ideas about the stabilization of the method for low order approximations. After that we worked on a quite general implementation that could be applied using two- and three-dimensional meshes with virtual elements of arbitrary shape. With these tools at hand it was only a small step to apply the new virtual element scheme also to finite strain plasticity problems and extend the application range to anisotropic materials which resulted in joint work with Jörg Schröder. The virtual element method was further extended to large strain dynamical problems by Mertcan Cihan who applied

vi Preface

his developments to vibration problems in elasticity and impact problems undergoing finite elasto-plastic deformations.

Fracture mechanics is another application where the virtual element method offers some advantages. To cover different possible approaches, we tried the phase field method for brittle and ductile fracture with Fadi Aldakheel. But also a new cutting scheme, based on linear fracture mechanics, was introduced within the virtual element method in the Ph.D. thesis of Ali Hussein. Additionally, phase field (for fracture detection) and the cutting scheme were put together in this thesis with adaptivity and provided a new efficient tool for crack propagation problems.

When Maria Laura de Bellis came to our institute as a Humboldt fellow, we continued our work on the virtual element method in the area of damage mechanics. Here virtual elements were used in a non-local form. Additionally, Laura worked on a serendipity formulation of virtual elements for finite strain problems.

With another Humboldian, Michele Marino, we tackled homogenization problems where the vitual element method has big advantages due to the possibility to define elements with arbitrary shape. Here, metals and ceramics are described using a direct discretization of a real microstructure by one virtual element per grains with non-convex polyhedral shape. This provides a very efficient tool for homogenization, especially since only averages have to be computed. This is also demonstrated in the Ph.D. work by Christoph Böhm for crystalline microstructures of steel and magnetoelectro-mechanical materials.

Lately, we applied the virtual element method to Kirchhoff plates where C^1 -continuous ansatz functions are needed. Based on the pioneering work of Franco Brezzi and Donatella Marini we were able to construct together with Olivier Allix, who visited our institute as a Humboldt laureate, virtual plate elements that provide stable solutions for thin plates with isotropic and anisotropic material.

This book is a combined effort of the three of us to allow graduate students and engineers working in industry to familiarize themselves with the new virtual element method. Due to that examples are included in the text for deeper understanding of the formulations and associated algorithms. Additionally, a simplified code that allows to solve two-dimensional elastic problems with the software tools *AceGen* and *AceFEM* was created and can be found in the shared library *AceShare* of *AceGen*.

We are very grateful to all Ph.D. students, post-docs and colleagues mentioned above with whom we had extremely fruitful discussions and collaborations. But we also have to mention and thank Jože Korelc, Professor in Ljubljana, who provided his symbolic software tool *AceGen* and the related analysis code *AceFEM* and changed it during the last five years considerably in order to accommodate the need for more flexibility when using a discretization scheme like the virtual element method with arbitrary and different number of nodes within elements and meshes.

Preface vii

Last but not least, we like to thank Volker Meine for drawing many of the figures in the book.

Hannover, Germany March 2023 Peter Wriggers Fadi Aldakheel Blaž Hudobivnik

Contents

I	Intro	oduction			
	1.1	History	y and Recent Developments of Virtual Elements		
	1.2	Introdu	actory Examples		
		1.2.1	Virtual Element Formulation of a Truss Using		
			a Linear Ansatz		
		1.2.2	Quadratic Ansatz for a One-Dimensional Virtual		
			Truss Element		
	1.3	Conter	nts of the Book		
	Refe	rences .			
2	Cont	Continuum Mechanics Background			
	2.1		Equations		
		2.1.1	Kinematics		
		2.1.2	Balance Laws		
	2.2	Consti	tutive Equations		
		2.2.1	Linear Elasticity		
		2.2.2	Finite Elasticity		
		2.2.3	Elasto-Plasticity		
	2.3	Variati	onal Formulation		
		2.3.1	Potential and Weak Form		
		2.3.2	Incompressibility		
		2.3.3	Plasticity		
		2.3.4	Heat Conduction		
	Refe	rences .			
3	VEN	I Ansatz	Functions and Projection for Solids		
	3.1		vimensional Case		
		3.1.1	General Ansatz Space		
		3.1.2	Computation of the Projection		
		3.1.3	Equivalent Projector		
		3.1.4	Projection for a Linear Ansatz		

x Contents

		3.1.5	Computation of the Projection Using Symbolic			
			Software	57		
		3.1.6	Projection for a Quadratic Ansatz	59		
		3.1.7	Serendipity Virtual Element for a Quadratic Ansatz	63		
		3.1.8	Computation of the Second Order Projection			
			Using Automatic Differentiation	66		
		3.1.9	Higher Order Ansatz for Virtual Elements	70		
		3.1.10	Virtual Elements Ansatz Functions for Curved			
			Surfaces	71		
	3.2	Three-	Dimensional Case	72		
		3.2.1	General Ansatz Space in Three Dimensions	73		
		3.2.2	Computation of the Projection in Three			
			Dimensions	75		
		3.2.3	Projection for Linear Ansatz in Three Dimensions	76		
	Refe	rences .		83		
4	VEN	I Ansatz	Functions and Projection for the Poisson			
•				87		
	4.1		imensional Case	87		
		4.1.1	Computation of the Projection	88		
		4.1.2	Projection for a Linear Ansatz	89		
		4.1.3	Projection for a Quadratic Ansatz	90		
	4.2		Dimensional Case	92		
	Refe			95		
_						
5			of the Virtual Element	97		
	5.1		tency Part	98		
		5.1.1	Weak Form	99		
	<i>-</i> 0	5.1.2	Potential	101		
	5.2		zation Techniques for Virtual Elements	102		
		5.2.1	Stabilization by a Discrete Bi-Linear Form	103		
	5 2	5.2.2	Energy Stabilization	105		
	5.3		bly to the Global Equation System	108		
	5.4		ical Example for the Poisson Equation	108		
		5.4.1	Quadratic Membrane	110		
	D.f.	5.4.2	L-shaped Membrane	112		
	Refe	rences .		114		
6	Virtu	Virtual Elements for Elasticity Problems				
	6.1		Elastic Response of Two-Dimensional Solids	118		
		6.1.1	Consistency Term Using Voigt Notation	119		
		6.1.2	Consistency Term Using Tensor Notation	123		
		6.1.3	Stabilization	124		
		6.1.4	Numerical Example	131		

Contents xi

	6.2	Finite Strain: Compressible Elasticity	134
		6.2.1 Consistency Term	134
		6.2.2 Stability Term	139
		6.2.3 Virtual Elements for Three-Dimensional Problems	
		in Nonlinear Elasticity	141
		6.2.4 General Solution for Nonlinear Equations	145
		6.2.5 Numerical Examples, Compressible Case	147
	6.3	Incompressible Elasticity	156
		6.3.1 Linear Virtual Element with Constant Pressure	157
		6.3.2 Quadratic Serendipity Virtual Element with Linear	
		Pressure	159
		6.3.3 Nearly Incompressible Behaviour	165
		6.3.4 Numerical Examples, Incompressible Case	166
	6.4	Anisotropic Elastic Behaviour	173
		6.4.1 Numerical Examples, Anisotropic Case	176
	Refer	ences	181
-	¥794	al El	105
7		al Elements for Problems in Dynamics	185
	7.1	Continuum Formulation	185
	7.2	Mass Matrix	187
	7.3	Solution Algorithms for Small Strains	192
		7.3.1 Matrix Formulation	192
		7.3.2 Numerical Integration in Time, Time Stepping	100
	7 .4	Schemes	193
	7.4	Solution Algorithms for Finite Strains	196
	7.5	Numerical Examples	199
		7.5.1 Transversal Beam Vibration	200
		7.5.2 Cook's Membrane Problem	202
		7.5.3 3D Beam	204
	Refer	ences	207
8	Virtu	al Element Formulation for Finite Plasticity	209
	8.1	Formulation of the Virtual Element	209
		8.1.1 Consistency Part Due to Projection	210
		8.1.2 Algorithmic Treatment of Finite Strain	
		Elasto-plasticity	211
		8.1.3 Energy Stabilization of the Virtual Element	
		for Finite Plasticity	213
	8.2	Numerical Examples	215
		8.2.1 Necking of Cylindrical Bar	215
		8.2.2 Taylor Anvil Test	219
	Refer	ences	223

xii Contents

9	Virtu	al Elem	ents for Thermo-mechanical Problems	225
	9.1	Introdu	ection	225
	9.2	Govern	ing Equations	227
		9.2.1	Energetic and Dissipative Response Functions	228
		9.2.2	Global Constitutive Equations	230
		9.2.3	Weak form and Pseudo-Potential Energy Function	231
	9.3	Virtual	Element Discretization	232
	9.4		entative Numerical Example	236
	Refer	rences .		240
10	Virtual Elements for Fracture Processes			
	10.1	Fractur	e Analysis Using Damage Mechanics	244
		10.1.1	Governing Equations for Isotropic Damage Model	244
		10.1.2	Virtual Element Formulation for Damage	247
		10.1.3	Numerical Examples	250
	10.2	Brittle	Crack-Propagation	255
		10.2.1	Equations of Brittle Crack Propagation	257
		10.2.2	Modeling Crack Propagation with Virtual	
			Elements	258
		10.2.3	Computation of Stress Intensity Factors	259
		10.2.4	Stress Intensity Factor Analysis Using Virtual	
			Elements	261
		10.2.5	Propagation Criteria: Maximum Circumferential	
			Stress Criterion	263
		10.2.6	Cutting Technique and Crack Update Algorithm	265
		10.2.7	Crack Propagation Simulations Based	
			on the Cutting Technique	268
	10.3	Phase I	Field Methods for Brittle Fracture Using Virtual	
		Elemen	nts	272
		10.3.1	Governing Equations for Elasticity	273
		10.3.2	Regularization of a Sharp Crack Topology	274
		10.3.3	Variational Formulation of Brittle Fracture	277
		10.3.4	Formulation of the Virtual Element Method	279
		10.3.5	Numerical Examples for Brittle Fracture Using	
			Phase Field	282
	10.4	Phase I	Field Methods for Ductile Fracture Using Virtual	
		Elemen	nts	286
		10.4.1	Governing Equations for Phase Field Ductile	
			Fracture	287
		10.4.2	Formulation of the Virtual Element Method	289
		10.4.3	Numerical Ductile Fracture Simulations	290
	10.5	Adaptiv	ve VEM for Phase-Field Fracture	295
		10.5.1	Governing Equations	295
		10.5.2	Mesh Refinement with Virtual Elements	297

Contents xiii

		10.5.3	Adaptive Numerical Simulations for Phase-Field	
			Fracture	299
	10.6	An Ada	aptive Scheme to Follow Crack Paths Combining	
		Phase F	Field and Cutting Methods	303
		10.6.1	General Idea	303
		10.6.2	Modeling Crack Propagation Using VEM	304
		10.6.3	Discontinuous Crack Propagation Using Phase	
			Field	304
		10.6.4	Numerical Examples	307
	Refer	ences		311
11	Virtu	al Elem	ent Formulation for Contact	317
••	11.1		ction	318
	11.2		tical Background for Contact of Solids	319
	11.2	11.2.1	· · · · · · · · · · · · · · · · · · ·	319
		11.2.2		322
		11.2.3		324
	11.3		t Discretization Based on Node Insertion	327
	11.4		imensional Treatment of Contact Using VEM	329
	11	11.4.1	Inserted Node and Gap in the Two-Dimensional	32)
		11.7.1	Case	329
		11.4.2	Discretization of the Contact Interface in 2d	331
		11.4.3	Penalty Formulation	335
		11.4.4	Augmented Lagrangian Multiplier Formulation	338
	11.5		Dimensional Treatment of Contact Using VEM	340
	11.5	11.5.1	Node Insertion for Contact of Three-Dimensional	540
		11.5.1	Solids	340
		11.5.2	Algorithmic Treatment of Node-to-Node	310
		11.5.2	Intersection	343
	11.6	Stabiliz	eation of VEM in Case of Contact	347
	11.7		ical Examples	348
	11.,	11.7.1	Behaviour of Different Stabilization Methods	348
		11.7.2	Two-Dimensional Patch Test	350
		11.7.3	Three-Dimensional Patch Test	350
		11.7.4	Hertzian Contact Problem, Two-Dimensional	352
		11.7.5	Hertz Contact for Large Deformations,	
			Two-Dimensional	356
		11.7.6	Hertzian Contact, Three-Dimensional	357
		11.7.7	Contacting Beams	359
		11.7.8	Wall Mounting of a Bolt	361
	Refer	ences		364

xiv Contents

12	Virtual Elements for Computational Homogenization of Polycrystalline Materials					
	of Polycrystalline Materials					
	12.1	Micro-	to-Macro Transition Concept	372		
		12.1.1	The Concept of Representative Volume Elements	372		
		12.1.2	Macroscopic Boundary Value Problem	373		
		12.1.3	Microscopic Boundary Value Problem	374		
		12.1.4	Homogenization and Macro-Homogeneity			
			Conditions	375		
		12.1.5	Computational Homogenization Approach	377		
		12.1.6	Multiscale Modeling Approach (FE ² /VE ²)	379		
	12.2	The Vi	rtual Element Method	380		
		12.2.1	Homogenization Procedure: Sensitivity Analysis			
			for Virtual Elements	382		
	12.3	Repres	entative Numerical Examples	384		
		12.3.1	Tensile and Shear Deformations in Two			
			Dimensions	385		
		12.3.2	Three Dimensional Homogenization	387		
	Refer	ences .		391		
13	Vieto	ıol Flom	ents for Beams and Plates	395		
13	13.1		Element Formulations for Euler-Bernoulli Beams	396		
	13.1	13.1.1	Third Order Ansatz for a One-Dimensional	390		
		13.1.1	Virtual Beam Element	397		
		13.1.2	Fourth Order Ansatz for a One-Dimensional	391		
		13.1.2	Virtual Beam Element	400		
		13.1.3	Static Condensation of the Moments	406		
	13.2		off-Love Plates	407		
	13.2	13.2.1	Mathematical Model of the Plate and Constitutive	407		
		13.2.1	Relations	407		
	13.3	Formul	ation of the Virtual Element	411		
	13.3	13.3.1	General Notations	412		
		13.3.1	Ansatz and Projection	413		
		13.3.2	Ansatz Function	415		
		13.3.4	Plate Element with Constant Curvature	415		
		13.3.4	Plate Element with Linear Curvature	419		
		13.3.6	Residual and Stiffness Matrix of the Virtual Plate	419		
		13.3.0	Element	422		
	13.4	Numar	ical Examples			
	13.4	13.4.1	Notation Used in the Examples	425		
				426		
		13.4.2 13.4.3	Clamped Plate Under Uniform Load	429		
		13.4.4	Rectangular Orthotropic Plate	429		
	12.5		rectangular Orthotropic Plate	431		
	13.5		M Codes	433		
			Clamped Plate Under Uniform Load	435		
		13.3.1	Ciampeu riate Uliuci Ulilluliii Luau	433		

Contents xv

13.5.2 Clamped Plate Under Point Load		
References	. 440	
Appendix A: Formulae in Virtual Element Formulations		
Appendix B: Definition and Labeling of Different Mesh Types	. 449	