Computational Methods for Fluid Dynamics

Joel H. Ferziger · Milovan Perić · Robert L. Street

Computational Methods for Fluid Dynamics

Fourth Edition

Joel H. Ferziger Department of Mechanical Engineering Stanford University Stanford, CA, USA

Robert L. Street Department of Civil and Environmental Engineering Stanford University Stanford, CA, USA Milovan Perić University of Duisburg-Essen Duisburg, Germany

ISBN 978-3-319-99691-2 ISBN 978-3-319-99693-6 (eBook) https://doi.org/10.1007/978-3-319-99693-6

 1^{st} – 3^{rd} edition: © Springer-Verlag Berlin Heidelberg 1996, 1999, 2002 4^{th} edition: © Springer Nature Switzerland AG 2020

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

Computational fluid dynamics, commonly known by the acronym 'CFD', continues to have significant expansion. There are many software packages available that solve fluid flow problems; thousands of engineers are using them across a broad range of industries and research areas. The market is growing apparently at a rate of around 15% each year. CFD codes are accepted nowadays as design tools in many industries and are used not only to solve problems but also to help in designing and optimizing various products and as a vehicle for research. While the user-friendliness of commercial CFD-tools has greatly increased since the first edition of this book appeared in 1996, for their efficient and reliable application it is still necessary that the user has a solid background in both fluid mechanics and CFD-methods. We assume that our readers are familiar with theoretical fluid mechanics, so we try to provide useful information on the other component—computational methods for fluid dynamics.

The book is based on material offered by the authors in the past in courses at Stanford University, the University of Erlangen-Nürnberg and the Technical University of Hamburg-Harburg, as well as in a number of short courses. It reflects the authors' experience in developing numerical methods, writing CFD codes and using them to solve engineering and geophysical problems. Many of the codes used in the examples, from the simple ones involving rectangular grids to the ones using non-orthogonal grids and multigrid methods, are available to interested readers; the information on how to access them via the Internet is given in the appendix. These codes illustrate some of the methods described in the book; they can be extended and adapted to the solution of many fluid mechanical problems. Students should try to modify them (e.g., to implement different boundary conditions, interpolation schemes, differentiation and integration approximations, etc.). This is important as one does not really know a method until she or he has programmed and/or run it. We have learned that many researchers have used these codes in the past as the basis for their research projects.

The finite volume method is favored in this book, although finite difference methods are described in what we hope is sufficient detail. Finite element methods are not covered in detail as a number of books on that subject already exist.

vi Preface

The basic ideas of each topic are described in such a way that they can be understood by the reader; where possible, we have avoided lengthy mathematical analysis. Usually, a general description of an idea or method is followed by a more detailed description (including the necessary equations) of one or two numerical schemes representative of the better methods of the type; other possible approaches and extensions are briefly described. We have tried to emphasize common elements of methods rather than their differences and to provide the basis upon which variants can be built.

We have placed considerable emphasis on the need to estimate numerical errors; almost all examples in this book are accompanied with error analysis. Although it is possible for a *qualitatively incorrect* solution of a problem to look reasonable (it may even be a good solution of another problem), the consequences of accepting it may be severe. On the other hand, sometimes a solution of a relatively low accuracy can be of value if treated with care. Industrial users of commercial codes need to learn to judge the quality of the results before believing them. Likewise, researchers have the same challenge. We hope that this book will contribute to the awareness that numerical solutions are always approximate and need to be properly assessed.

We have tried to cover a cross-section of modern approaches, including arbitrary polyhedral and overlapping grids, multigrid methods and parallel computing, methods for moving grids and free surface flows, direct and large-eddy simulation of turbulence, etc. Obviously, we could not cover all these topics in detail, but we hope that the information contained herein will provide the reader with a useful general knowledge of the subject; those interested in a more detailed study of a particular topic will find recommendations for further reading.

The long time between the previous and the current edition of this book was caused by the sudden passing of Joel H. Ferziger in 2004. Although the remaining co-author of the previous edition found an excellent partner for continuing the project in Bob Street, for various reasons (but mostly the lack of time), it took a while before this new edition was finished. The new co-author has brought a new expertise, and the time passed also required that most chapters be significantly revised. Notably, the former Chap. 7 dealing with methods for solving the Navier-Stokes equations has been completely re-written and broken-up into two chapters. Fractional-step methods, which are widely used for large-eddy simulations, have been described in more detail and a new, implicit version has been derived. New codes based on the fractional-step method have been added to the set which can be downloaded by readers from the web-site created specially for that purpose (www.cfd-peric.de). Most examples in later chapters have been re-computed using commercial software; the simulation files for these examples with some instructions can also be downloaded from the above web-site.

While we have invested every effort to avoid typing, spelling, and other errors, no doubt some remain to be found by readers. We will appreciate your notifying us of any mistakes you might find, as well as your comments and suggestions for improvement of future editions of the book. For that purpose, the authors' electronic mail addresses are given below. Corrections, as well as additional extended reports on some of the examples will become available for download at the above web-site.

Preface vii

We also hope that colleagues whose work has not been referenced will forgive us, because any omissions are unintentional.

We have to thank all our present and former students, colleagues, and friends, who helped us in one way or another to finish this work; the complete list of names is too long to present here. Names that we cannot avoid mentioning include (in alphabetic order) Drs. Steven Armfield, David Briggs, Fotini (Tina) Katapodes Chow, Ismet Demirdžić, Gene Golub, Sylvain Lardeau, Željko Lilek, Samir Muzaferija, Joseph Oliger, Eberhard Schreck, Volker Seidl, and Kishan Shah. The help provided by those people who created and made available TeX, LateX, Linux, Xfig, Gnuplot, and other tools which made our job easier is also greatly appreciated. Special thanks to Rafael Ritterbusch who provided the fluid-structure interaction example in Chap. 13.

Our families gave us a tremendous support during this endeavor; our special thanks go to Eva Ferziger, Anna James, Robinson and Kerstin Perić and Norma Street.

The initial collaboration between geographically distant colleagues was made possible by grants and fellowships from the Alexander von Humboldt Foundation (to JHF) and the Deutsche Forschungsgemeinschaft (German National Research Foundation, to MP). Without their support, this work would never have come into existence and we cannot express sufficient thanks to them. One of the authors (MP) is especially indebted to the late Peter S. MacDonald, former president of CD-adapco, for his support, and to managers at Siemens (Jean-Claude Ercollanely, Deryl Sneider, and Sven Enger), who provided both support and the software Simcenter STAR-CCM+ to create examples in Chaps. 9–13¹. RLS is deeply appreciative of the opportunity to contribute to the continuation of the work of his great friend and research colleague, Joel Ferziger.

Duisburg, Germany

Stanford, USA Stanford, USA Milovan Perić milovan.peric@t-online.de Joel H. Ferziger Robert L. Street street@stanford.edu

¹Examples in Sects. 9.12.2, 10.3.5, 10.3.8, 12.2.2, 12.5.2, 12.6.4, and all of Chap. 13 (except where another source is explicitly named) were simulated and the images were created with Simcenter STAR-CCM+, a trademark or registered trademark of Siemens Industry Software NV and any of its affiliates.

Contents

1	Basic	Concepts of Fluid Flow				
	1.1	Introduction				
	1.2	Conservation Principles				
	1.3	Mass Conservation				
	1.4	Momentum Conservation				
	1.5	Conservation of Scalar Quantities				
	1.6	Dimensionless Form of Equations				
	1.7	Simplified Mathematical Models				
		1.7.1 Incompressible Flow				
		1.7.2 Inviscid (Euler) Flow				
		1.7.3 Potential Flow				
		1.7.4 Creeping (Stokes) Flow				
		1.7.5 Boussinesq Approximation				
		1.7.6 Boundary Layer Approximation				
		1.7.7 Modeling of Complex Flow Phenomena 16				
	1.8	Mathematical Classification of Flows				
		1.8.1 Hyperbolic Flows				
		1.8.2 Parabolic Flows				
		1.8.3 Elliptic Flows				
		1.8.4 Mixed Flow Types				
	1.9	Plan of This Book				
2	Intro	duction to Numerical Methods				
	2.1	Approaches to Solving Problems in Fluid Dynamics 23				
	2.2	What is CFD?				
	2.3	Possibilities and Limitations of Numerical Methods				
	2.4	Components of a Numerical Solution Method				
		2.4.1 Mathematical Model				
		2.4.2 Discretization Method				
		2.4.3 Coordinate and Basis Vector Systems				

x Contents

		2.4.4	Numerical Grid	28	
		2.4.5	Finite Approximations	33	
		2.4.6	Solution Method	34	
		2.4.7	Convergence Criteria	34	
	2.5	Properti	es of Numerical Solution Methods	34	
		2.5.1	Consistency	34	
		2.5.2	Stability	35	
		2.5.3	Convergence	36	
		2.5.4	Conservation	36	
		2.5.5	Boundedness	37	
		2.5.6	Realizability	37	
		2.5.7	Accuracy	37	
	2.6	Discreti	zation Approaches	39	
		2.6.1	Finite Difference Method	39	
		2.6.2	Finite Volume Method	39	
		2.6.3	Finite Element Method	40	
3	Finite	Difference	ce Methods	41	
	3.1		ction	41	
	3.2	Basic C	oncept	42	
	3.3		imation of the First Derivative	44	
		3.3.1	Taylor Series Expansion	44	
		3.3.2	Polynomial Fitting	46	
		3.3.3	Compact Schemes	47	
		3.3.4	Non-uniform Grids	49	
	3.4	Approxi	imation of the Second Derivative	51	
	3.5	Approximation of Mixed Derivatives			
	3.6 Approximation of Other Terms		imation of Other Terms	55	
		3.6.1	Non-differentiated Terms	55	
		3.6.2	Differentiated Terms Near Boundaries	55	
	3.7	-	entation of Boundary Conditions	56	
		3.7.1	Implementation of Boundary Conditions Using		
			Internal Grid Points	56	
		3.7.2	Implementation of Boundary Conditions Using		
			Ghost Points	57	
	3.8	The Algebraic Equation System			
	3.9	Discretization Errors 6			
	3.10		Difference Example	63	
	3.11		oduction to Spectral Methods	69	
		3.11.1	Tools for Analysis	70	
		3 11 2	Solution of Differential Equations	73	

Contents xi

4	Finite	Volume	Methods	81	
	4.1	Introdu	ction	81	
	4.2	Approx	cimation of Surface Integrals	82	
	4.3	Approximation of Volume Integrals			
	4.4	Interpo	lation and Differentiation Practices	87	
		4.4.1	Upwind Interpolation (UDS)	87	
		4.4.2	Linear Interpolation (CDS)	88	
		4.4.3	Quadratic Upwind Interpolation (QUICK)	89	
		4.4.4	Higher-Order Schemes	90	
		4.4.5	Other Schemes	92	
		4.4.6	A General Strategy, TVD Schemes, and Flux		
			Limiters	93	
	4.5	Implem	nentation of Boundary Conditions	97	
	4.6	The Al	gebraic Equation System	98	
	4.7		les	98	
		4.7.1	Testing the Order of FV-Approximations	98	
		4.7.2	Scalar Transport in a Known Velocity Field	103	
		4.7.3	Testing the Numerical Diffusion	107	
5	Coluti	on of I is	near Equation Systems	111	
3	5.1		ction	111	
	5.2		Methods	111	
	3.2	5.2.1	Gauss Elimination	112	
		5.2.1		114	
		5.2.2	LU Decomposition	115	
		5.2.4	Cyclic Reduction	115	
	5.3		e Methods	117	
	3.3	5.3.1	Basic Concept	117	
		5.3.2	Convergence.	117	
		5.3.3	Some Basic Methods	120	
		5.3.4	Incomplete LU Decomposition: Stone's Method	120	
		5.3.5	ADI and Other Splitting Methods	125	
		5.3.6	Krylov Methods	127	
		5.3.7	Multigrid Methods	134	
		5.3.8	Other Iterative Solvers	138	
	5.4		d Equations and Their Solution	139	
	J. 4	5.4.1	Simultaneous Solution	139	
		5.4.2	Sequential Solution	140	
		5.4.2	Under-Relaxation	140	
	5.5		near Equations and Their Solution	140	
	5.5	5.5.1	Newton-Like Techniques	142	
		5.5.2		142	
		3.3.4	Other Techniques	143	

xii Contents

	5.6	Deferre	ed-Correction Approaches	144
	5.7	Conver	gence Criteria and Iteration Errors	146
	5.8	Examp	les	151
6	Meth	ods for U	Unsteady Problems	157
	6.1		ection	157
	6.2	Method	ds for Initial Value Problems in ODEs	157
		6.2.1	Two-Level Methods	157
		6.2.2	Predictor-Corrector and Multipoint Methods	160
		6.2.3	Runge-Kutta Methods	163
		6.2.4	Other Methods	165
	6.3	Applica	ation to the Generic Transport Equation	167
		6.3.1	Explicit Methods	168
		6.3.2	Implicit Methods	173
		6.3.3	Other Methods	178
	6.4	Examp	les	178
7	Solut	ion of the	e Navier-Stokes Equations: Part 1	183
	7.1	Basics		183
		7.1.1	Discretization of Convection and Viscous Terms	184
		7.1.2	Discretization of Pressure Terms and Body	
			Forces	185
		7.1.3	Conservation Properties	186
		7.1.4	Choice of Variable Arrangement on the Grid	191
		7.1.5	Calculation of the Pressure	193
		7.1.6	Initial and Boundary Conditions	
			for the Navier-Stokes Equations	197
		7.1.7	Illustrative Simple Schemes	201
	7.2	Calcula	ation Strategies for Steady and Unsteady Flows	204
		7.2.1	Fractional-Step Methods	204
		7.2.2	SIMPLE, SIMPLER, SIMPLEC and PISO	210
		7.2.3	Artificial Compressibility Methods	221
		7.2.4	Streamfunction-Vorticity Methods	224
8	Solut	ion of the	e Navier-Stokes Equations: Part 2	227
	8.1	Implici	t Iterative Methods on a Staggered Grid	227
		8.1.1	SIMPLE for Staggered Grids	233
		8.1.2	IFSM for Staggered Grids	236
	8.2	Implici	t Iterative Methods for Colocated Grids	237
		8.2.1	Treatment of Pressure for Colocated Variables	237
		8.2.2	SIMPLE for Colocated Grids	241
		8.2.3	IFSM for Colocated Grids	243
	8.3	Non-ite	erative Implicit Methods for Unsteady Flows	244
		8.3.1	Spatial Discretization of the Adams-Bashforth	
			Convection Term	246

Contents xiii

		8.3.2	An Alternating-Direction Implicit Scheme	247
		8.3.3	The Poisson Equation for Pressure	248
		8.3.4	Initial and Boundary Conditions	252
		8.3.5	Iterative Versus Non-iterative Schemes	253
	8.4	Example	es	255
		8.4.1	Steady Flow in Square Enclosures	256
		8.4.2	Unsteady Flow in Square Enclosures	267
9	Comp	olex Geom	netries	275
	9.1	The Cho	oice of Grid	275
		9.1.1	Stepwise Approximation of Curved Boundaries	275
		9.1.2	Immersed-Boundary Methods	277
		9.1.3	Overlapping Grids	278
		9.1.4	Boundary-Fitted Non-orthogonal Grids	280
	9.2	Grid Ge	eneration	280
		9.2.1	Definition of Flow Domain	282
		9.2.2	Generation of a Surface Grid	283
		9.2.3	Generation of a Volume Grid	284
	9.3	The Cho	oice of Velocity Components	288
		9.3.1	Grid-Oriented Velocity Components	289
		9.3.2	Cartesian Velocity Components	290
	9.4	The Cho	oice of Variable Arrangement	290
		9.4.1	Staggered Arrangements	290
		9.4.2	Colocated Arrangement	291
	9.5		Difference Methods	292
		9.5.1	Methods Based on Coordinate Transformation	292
		9.5.2	Methods Based on Shape Functions	295
	9.6	Finite-V	Volume Methods	296
		9.6.1	Block-Structured Grids	297
		9.6.2	Unstructured Grids	301
		9.6.3	Grids for Control-Volume-Based Finite-Element	
			Methods	303
		9.6.4	Computation of Grid Parameters	304
	9.7		imation of Fluxes and Source Terms	307
		9.7.1	Approximation of Convection Fluxes	307
		9.7.2	Approximation of Diffusion Fluxes	311
		9.7.3	Approximation of Source Terms	314
	9.8		e-Correction Equation	315
	9.9		metric Problems	321
	9.10		Order Finite-Volume Methods	323
	9.11	-	entation of Boundary Conditions	324
		9.11.1	Inlet	324
		9.11.2	Outlet	324

xiv Contents

		9.11.3	Impermeable Walls	326
		9.11.4	Symmetry Planes	328
		9.11.5	Specified Pressure	329
	9.12	Example	es	330
		9.12.1	Flow Around Circular Cylinder at $Re = 20 \dots$	330
		9.12.2	Flow Around Circular Cylinder at $Re = 200 \dots$	334
		9.12.3	Flow Around Circular Cylinder in a Channel	
			at Re = 200	338
10	Turbu	lent Flow	vs	347
	10.1		tion	347
	10.2		Jumerical Simulation (DNS)	350
		10.2.1	Overview	350
		10.2.2	Discussion	351
		10.2.3	Initial and Boundary Conditions	355
		10.2.4	Examples of DNS Application	358
		10.2.5	Other Applications of DNS	363
	10.3	Simulati	on of Turbulence with Models	363
		10.3.1	Model Categories	363
		10.3.2	Implicit Large-Eddy Simulation (ILES)	366
		10.3.3	Large-Eddy Simulation (LES)	366
		10.3.4	Examples of LES Application	380
		10.3.5	Reynolds-Averaged Navier-Stokes (RANS)	
			Simulations	395
		10.3.6	Example of RANS Application: Flow Around	
			a Sphere at $Re = 500,000$	414
		10.3.7	Very-Large-Eddy Simulation/TRANS/DES	417
11	Comp	ressible F	Tlow	421
	11.1		tion	421
	11.2		-Correction Methods for Arbitrary Mach Number	422
		11.2.1	Implicit Fractional-Step Method for All Flow	
			Speeds	423
		11.2.2	SIMPLE Method for All Flow Speeds	426
		11.2.3	Properties of the Pressure-Correction Equation	427
		11.2.4	Boundary Conditions	428
		11.2.5	Examples	433
	11.3	Methods	s Designed for Compressible Flow	438
		11.3.1	Introduction	438
		11.3.2	Discontinuities	439
		11.3.3	Limiters	440
		11.3.4	Preconditioning	442
	11.4	Comme	nts on Applications	444

Contents xv

12	Efficie	ncy and Accuracy Improvement	447
	12.1	Introduction	447
		12.1.1 Grid and Flow Feature Resolution	447
		12.1.2 Organization	450
	12.2	Error Analysis and Estimation	450
		12.2.1 Description of Errors	450
		12.2.2 Estimation of Errors	453
		12.2.3 Recommended Practice for CFD Uncertainty	
		Analysis	464
	12.3	Grid Quality and Optimization	468
	12.4	Multigrid Methods for Flow Calculation	472
	12.5	Adaptive Mesh Refinement (AMR)	479
		12.5.1 Motivation for Adaptive Mesh Refinement	479
		12.5.2 The AMR Strategy	480
	12.6	Parallel Computing in CFD	485
		12.6.1 Parallelization of Iterative Solvers for Linear	
		Equation Systems	486
		12.6.2 Domain Decomposition in Space	488
		12.6.3 Domain Decomposition in Time	491
		12.6.4 Efficiency of Parallel Computing	492
		12.6.5 Graphics Processing Units (GPUs) and Parallel	
		Processing	497
13	Specia	ll Topics	499
15	13.1	Introduction	499
	13.2	Heat and Mass Transfer.	500
	13.3	Flows with Variable Fluid Properties	510
	13.4	Moving Grids	511
	13.5	Free-Surface Flows	521
	10.0	13.5.1 Interface-Capturing Methods	524
		13.5.2 Interface-Tracking Methods	531
		13.5.3 Hybrid Methods	536
	13.6	Solution Forcing	537
	13.7	Meteorological and Oceanographic Applications	538
	13.8	Multiphase Flows	541
	13.9	Combustion	548
	13.10	Fluid-Structure Interaction	550
		13.10.1 Floating and Flying Bodies	551
		13.10.2 Deformable Bodies	560
Apı	endix:	Supplementary Information	565
			E C 0
Ket	erences		569
Ind	ex		591

Acronyms

1D One-dimensional 2D Two-dimensional 3D Three-dimensional

ADI Alternating direction implicit

ALM Actuator line model

BDS Backward difference scheme
CDS Central difference scheme
CFD Computational fluid dynamics
CG Conjugate gradient method

CGSTAB CG stabilized CM Control mass CV Control volume

CVFEM Control-volume-based finite element method

DDES Delayed detached-eddy simulation

DES Detached-eddy simulation
DNS Direct numerical simulation

EARSM Explicit algebraic Reynolds-stress model

EB Elliptic blending

ENO Essentially non-oscillatory FAS Full approximation scheme

FD Finite difference

FDS Forward difference scheme

FE Finite elements

FFT Fast Fourier transform FMG Full multigrid method

FV Finite volume

GC Global communication
GS Gauss-Seidel method

ICCG CG preconditioned by incomplete Cholesky method

IDDES Improved delayed detached-eddy simulation

xviii Acronyms

IFSM Implicit fractional-step method ILES Implicit large-eddy simulation

ILU Incomplete lower-upper decomposition

LC Local communication
LES Large-eddy simulation
LU Lower-upper decomposition

MAC Marker-and-cell MG Multigrid

MPI Message-passing interface
ODE Ordinary differential equation
PDE Partial differential equation
PVM Parallel virtual machine

RANS Reynolds averaged Navier-Stokes

rms Root mean square
rpm Revolutions per minute
RSFS Resolved sub-filter scale
RSM Reynolds-stress model
SBL Stable boundary layer
SCL Space conservation law

SFS Sub-filter scale SGS Subgrid scale

SIP Strongly implicit procedure SOR Successive over-relaxation SST Shear stress transport

TDMA Tridiagonal matrix algorithm

TRANS Transient RANS

TVD Total variation diminishing UDS Upwind difference scheme

URANS Unsteady RANS

VLES Very-large-eddy simulation

VOF Volume-of-fluid