biblioteche Università Vanvitelli, biblioteche Vanvitelli, biblioteche Università degli Studi della Campania, Sebina, biblioteca, opac, catalogo biblioteca, Campania, Catalogo biblioteca, catalogo on-line, Prestito libri

Numerical Partial Differential Equations : Conservation Laws and Elliptic Equations

Thomas, James W.

eBook Springer <editore> 1999

  • Scheda
  • Links
eBook
Monografia
Descrizione *Numerical Partial Differential Equations : Conservation Laws and Elliptic Equations / J. W. Thomas. - New York : Springer, 1999. - xxii, 556 p. : ill. ; 24 cm
ISBN E-Book 9781461205692
Collana Texts in applied mathematics , 33
Primo Autore
Thomas, James W.
Soggetti 35J25 - Boundary value problems for second-order elliptic equations [MSC 2020]
35L65 - Hyperbolic conservation laws [MSC 2020]
65-XX - Numerical analysis [MSC 2020]
65M06 - Finite difference methods for initial value and initial-boundary value problems involving PDEs [MSC 2020]
65M12 - Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs [MSC 2020]
65N06 - Finite difference methods for boundary value problems involving PDEs [MSC 2020]
65N12 - Stability and convergence of numerical methods for boundary value problems involving PDEs [MSC 2020]
Parole chiave Applied Mathematics
Differential equations
Numerical methods
Partial Differential Equations
Stability
Luogo pubblicazione New York
Editori Springer <editore>
Anno pubblicazione 1999
Thesauri 35J25
35L65
65-XX
65M06
65M12
65N06
65N12
Boundary value problems for second-order elliptic equations [MSC 2020]
Finite difference methods for boundary value problems involving PDEs [MSC 2020]
Finite difference methods for initial value and initial-boundary value problems involving PDEs [MSC 2020]
Hyperbolic conservation laws [MSC 2020]
Numerical analysis [MSC 2020]
Stability and convergence of numerical methods for boundary value problems involving PDEs [MSC 2020]
Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs [MSC 2020]